ff/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
//! This crate provides traits for working with finite fields.
// Catch documentation errors caused by code changes.
#![no_std]
#![deny(intra_doc_link_resolution_failure)]
#![allow(unused_imports)]
#![forbid(unsafe_code)]
#[cfg(feature = "std")]
#[macro_use]
extern crate std;
#[cfg(feature = "derive")]
pub use ff_derive::*;
pub use bitvec::view::BitView;
use bitvec::{array::BitArray, order::Lsb0};
use core::convert::TryFrom;
use core::fmt;
use core::marker::PhantomData;
use core::ops::{Add, AddAssign, BitAnd, Mul, MulAssign, Neg, Shr, Sub, SubAssign};
use rand_core::RngCore;
#[cfg(feature = "std")]
use std::io::{self, Read, Write};
use subtle::{ConditionallySelectable, CtOption};
/// Bit representation of a field element.
pub type FieldBits<V> = BitArray<Lsb0, V>;
/// This trait represents an element of a field.
pub trait Field:
Sized
+ Eq
+ Copy
+ Clone
+ Default
+ Send
+ Sync
+ fmt::Debug
+ 'static
+ ConditionallySelectable
+ Add<Output = Self>
+ Sub<Output = Self>
+ Mul<Output = Self>
+ Neg<Output = Self>
+ for<'a> Add<&'a Self, Output = Self>
+ for<'a> Mul<&'a Self, Output = Self>
+ for<'a> Sub<&'a Self, Output = Self>
+ MulAssign
+ AddAssign
+ SubAssign
+ for<'a> MulAssign<&'a Self>
+ for<'a> AddAssign<&'a Self>
+ for<'a> SubAssign<&'a Self>
{
/// Returns an element chosen uniformly at random using a user-provided RNG.
fn random(rng: impl RngCore) -> Self;
/// Returns the zero element of the field, the additive identity.
fn zero() -> Self;
/// Returns the one element of the field, the multiplicative identity.
fn one() -> Self;
/// Returns true iff this element is zero.
fn is_zero(&self) -> bool;
/// Squares this element.
#[must_use]
fn square(&self) -> Self;
/// Cubes this element.
#[must_use]
fn cube(&self) -> Self {
self.square() * self
}
/// Doubles this element.
#[must_use]
fn double(&self) -> Self;
/// Computes the multiplicative inverse of this element,
/// failing if the element is zero.
fn invert(&self) -> CtOption<Self>;
/// Returns the square root of the field element, if it is
/// quadratic residue.
fn sqrt(&self) -> CtOption<Self>;
/// Exponentiates `self` by `exp`, where `exp` is a little-endian order
/// integer exponent.
///
/// **This operation is variable time with respect to the exponent.** If the
/// exponent is fixed, this operation is effectively constant time.
fn pow_vartime<S: AsRef<[u64]>>(&self, exp: S) -> Self {
let mut res = Self::one();
for e in exp.as_ref().iter().rev() {
for i in (0..64).rev() {
res = res.square();
if ((*e >> i) & 1) == 1 {
res.mul_assign(self);
}
}
}
res
}
}
/// This represents an element of a prime field.
pub trait PrimeField: Field + From<u64> {
/// The prime field can be converted back and forth into this binary
/// representation.
type Repr: Default + AsRef<[u8]> + AsMut<[u8]>;
/// The backing store for a bit representation of a prime field element.
type ReprBits: BitView + Send + Sync;
/// Interpret a string of numbers as a (congruent) prime field element.
/// Does not accept unnecessary leading zeroes or a blank string.
fn from_str(s: &str) -> Option<Self> {
if s.is_empty() {
return None;
}
if s == "0" {
return Some(Self::zero());
}
let mut res = Self::zero();
let ten = Self::from(10);
let mut first_digit = true;
for c in s.chars() {
match c.to_digit(10) {
Some(c) => {
if first_digit {
if c == 0 {
return None;
}
first_digit = false;
}
res.mul_assign(&ten);
res.add_assign(&Self::from(u64::from(c)));
}
None => {
return None;
}
}
}
Some(res)
}
/// Attempts to convert a byte representation of a field element into an element of
/// this prime field, failing if the input is not canonical (is not smaller than the
/// field's modulus).
///
/// The byte representation is interpreted with the same endianness as elements
/// returned by [`PrimeField::to_repr`].
fn from_repr(_: Self::Repr) -> Option<Self>;
/// Converts an element of the prime field into the standard byte representation for
/// this field.
///
/// The endianness of the byte representation is implementation-specific. Generic
/// encodings of field elements should be treated as opaque.
fn to_repr(&self) -> Self::Repr;
/// Converts an element of the prime field into a little-endian sequence of bits.
fn to_le_bits(&self) -> FieldBits<Self::ReprBits>;
/// Returns true iff this element is odd.
fn is_odd(&self) -> bool;
/// Returns true iff this element is even.
#[inline(always)]
fn is_even(&self) -> bool {
!self.is_odd()
}
/// Returns the bits of the field characteristic (the modulus) in little-endian order.
fn char_le_bits() -> FieldBits<Self::ReprBits>;
/// How many bits are needed to represent an element of this field.
const NUM_BITS: u32;
/// How many bits of information can be reliably stored in the field element.
///
/// This is usually `Self::NUM_BITS - 1`.
const CAPACITY: u32;
/// Returns a fixed multiplicative generator of `modulus - 1` order. This element must
/// also be a quadratic nonresidue.
///
/// It can be calculated using [SageMath] as `GF(modulus).primitive_element()`.
///
/// Implementations of this method MUST ensure that this is the generator used to
/// derive `Self::root_of_unity`.
///
/// [SageMath]: https://www.sagemath.org/
fn multiplicative_generator() -> Self;
/// An integer `s` satisfying the equation `2^s * t = modulus - 1` with `t` odd.
///
/// This is the number of leading zero bits in the little-endian bit representation of
/// `modulus - 1`.
const S: u32;
/// Returns the `2^s` root of unity.
///
/// It can be calculated by exponentiating `Self::multiplicative_generator` by `t`,
/// where `t = (modulus - 1) >> Self::S`.
fn root_of_unity() -> Self;
}
pub use self::arith_impl::*;
mod arith_impl {
/// Calculate a - b - borrow, returning the result and modifying
/// the borrow value.
#[inline(always)]
pub fn sbb(a: u64, b: u64, borrow: &mut u64) -> u64 {
let tmp = (1u128 << 64) + u128::from(a) - u128::from(b) - u128::from(*borrow);
*borrow = if tmp >> 64 == 0 { 1 } else { 0 };
tmp as u64
}
/// Calculate a + b + carry, returning the sum and modifying the
/// carry value.
#[inline(always)]
pub fn adc(a: u64, b: u64, carry: &mut u64) -> u64 {
let tmp = u128::from(a) + u128::from(b) + u128::from(*carry);
*carry = (tmp >> 64) as u64;
tmp as u64
}
/// Calculate a + (b * c) + carry, returning the least significant digit
/// and setting carry to the most significant digit.
#[inline(always)]
pub fn mac_with_carry(a: u64, b: u64, c: u64, carry: &mut u64) -> u64 {
let tmp = (u128::from(a)) + u128::from(b) * u128::from(c) + u128::from(*carry);
*carry = (tmp >> 64) as u64;
tmp as u64
}
}