use crate::polynomial::Polynomial;
use rand::Rng;
use log::{info};
pub const SCALE: f64 = 1e5; fn round_to(value: f64, decimal_places: usize) -> f64 {
let factor = 10f64.powi(decimal_places as i32); (value * factor).round() / factor }
pub fn encode(plaintext: &[f64], scaling_factor: f64) -> Polynomial {
if scaling_factor <= 0.0 {
panic!("Scaling factor must be positive"); }
info!("Encoding real numbers {:?} with scaling factor {}", plaintext, scaling_factor);
let coeffs: Vec<i64> = plaintext.iter()
.map(|&x| (x * scaling_factor).round() as i64) .collect();
info!("Encoded polynomial coefficients: {:?}", coeffs);
Polynomial::new(coeffs) }
pub fn decode(ciphertext: &Polynomial, scaling_factor: f64) -> Vec<f64> {
if scaling_factor <= 0.0 {
panic!("Scaling factor must be positive"); }
let threshold = 1e-10; let decimal_places = 2; info!("Decoding polynomial coefficients {:?} with scaling factor {}", ciphertext.coeffs, scaling_factor);
let decoded_values: Vec<f64> = ciphertext.coeffs.iter()
.map(|&c| {
let value = (c as f64) / scaling_factor; let rounded_value = round_to(value, decimal_places); if rounded_value.abs() < threshold {
0.0 } else {
rounded_value }
})
.collect();
info!("Decoded real numbers (with thresholding and rounding): {:?}", decoded_values);
decoded_values }
pub fn add_noise(poly: &Polynomial, _pub_key: &impl std::fmt::Debug) -> Polynomial {
let mut rng = rand::thread_rng(); let noise: Vec<i64> = poly.coeffs.iter().map(|&coeff| coeff + rng.gen_range(-10..10)).collect();
info!("Adding noise to polynomial {:?}. Result after noise addition: {:?}", poly.coeffs, noise);
Polynomial::new(noise) }
pub fn mod_reduce(poly: &Polynomial, modulus: i64) -> Polynomial {
let reduced: Vec<i64> = poly.coeffs.iter().map(|&coeff| coeff % modulus).collect();
info!("Performing modular reduction on polynomial {:?}. Result after mod reduction: {:?}", poly.coeffs, reduced);
Polynomial::new(reduced) }
pub fn mod_reduce_string(poly: &Polynomial, modulus: i64) -> Polynomial {
let reduced: Vec<i64> = poly.coeffs.iter().map(|&coeff| coeff % modulus).collect();
info!("Performing modular reduction on polynomial {:?}.", poly.coeffs);
info!("Result after mod reduction: {:?}", reduced);
let filtered: Vec<i64> = reduced.into_iter().filter(|&coeff| coeff != 0).collect();
info!("Filtered coefficients (non-zero): {:?}", filtered);
Polynomial::new(filtered) }
pub fn encode_string(plaintext: &str, scaling_factor: f64) -> Polynomial {
if scaling_factor <= 0.0 {
panic!("Scaling factor must be positive");
}
let coeffs: Vec<i64> = plaintext.chars()
.map(|c| (c as i64 * scaling_factor as i64)) .collect();
info!("Encoded string '{}' as polynomial coefficients: {:?}", plaintext, coeffs);
Polynomial::new(coeffs) }
pub fn decode_string(ciphertext: &Polynomial, scaling_factor: f64) -> String {
if scaling_factor <= 0.0 {
panic!("Scaling factor must be positive");
}
let decoded_chars: String = ciphertext.coeffs.iter()
.map(|&c| {
let value = c as f64 / scaling_factor;
value.round() as u8 as char
})
.collect();
info!("Decoded polynomial {:?} back to string: '{}'", ciphertext.coeffs, decoded_chars);
decoded_chars }