ckks_engine/polynomial.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
#[derive(Debug, Clone)]
pub struct Polynomial {
pub coeffs: Vec<i64>, // Coefficients for the polynomial
}
impl Polynomial {
// Constructor to create a new Polynomial with given coefficients
pub fn new(coeffs: Vec<i64>) -> Self {
Polynomial { coeffs }
}
//wrote this only for homomorphic truncate - we haven't used this anywhere apart from it
pub fn decode(&self) -> Vec<i64> {
self.coeffs.iter().map(|&c| {
let real = (c as f64) / 10_000_000.0;
real.round() as i64 // Round to the nearest integer
}).collect()
}
// Polynomial addition
pub fn add(&self, other: &Polynomial) -> Polynomial {
// Determine the maximum length of the two polynomials
let len = self.coeffs.len().max(other.coeffs.len());
let mut result = vec![0; len]; // Initialize result vector with zeros
// Add coefficients of both polynomials
for i in 0..len {
let a = if i < self.coeffs.len() { self.coeffs[i] } else { 0 }; // Get coefficient from self or 0 if out of bounds
let b = if i < other.coeffs.len() { other.coeffs[i] } else { 0 }; // Get coefficient from other or 0 if out of bounds
result[i] = a + b; // Add coefficients
}
Polynomial::new(result) // Return new polynomial as the result
}
// Polynomial subtraction
pub fn subtract(&self, other: &Polynomial) -> Polynomial {
// Determine the maximum length of the two polynomials
let len = self.coeffs.len().max(other.coeffs.len());
let mut result = vec![0; len]; // Initialize result vector with zeros
// Subtract coefficients of the second polynomial from the first
for i in 0..len {
let a = if i < self.coeffs.len() { self.coeffs[i] } else { 0 }; // Get coefficient from self or 0 if out of bounds
let b = if i < other.coeffs.len() { other.coeffs[i] } else { 0 }; // Get coefficient from other or 0 if out of bounds
result[i] = a - b; // Subtract coefficients
}
Polynomial::new(result) // Return new polynomial as the result
}
// Polynomial multiplication
pub fn multiply(&self, other: &Polynomial) -> Polynomial {
// Determine size for the resulting polynomial
let result_size = self.coeffs.len().max(other.coeffs.len());
let mut result_coeffs = vec![0.0; result_size]; // Initialize result coefficients with f64 for scaling
// Multiply matching coefficients of both polynomials
let min_len = self.coeffs.len().min(other.coeffs.len());
for i in 0..min_len {
result_coeffs[i] = (self.coeffs[i] as f64 * other.coeffs[i] as f64) / 1e7; // Scale and store the product
}
// Create a new polynomial with rounded coefficients
Polynomial::new(result_coeffs.iter().map(|&x| x.round() as i64).collect())
}
// Polynomial negation
pub fn negation(&self) -> Polynomial {
// Negate each coefficient of the polynomial
let negated_coeffs: Vec<f64> = self.coeffs.iter().map(|&c| -(c as f64)).collect();
// Create a new polynomial with rounded negated coefficients
Polynomial::new(negated_coeffs.iter().map(|&x| x.round() as i64).collect())
}
pub fn divide(&self, divisor: &Polynomial, scaling_factor: f64) -> Polynomial {
let mut result_coeffs = Vec::with_capacity(self.coeffs.len());
for (a, b) in self.coeffs.iter().zip(divisor.coeffs.iter()) {
// Check for zero in the divisor to avoid division by zero
if *b == 0 {
panic!("Division by zero encountered in polynomial division");
}
// Perform the division and scaling
let scaled_result = (*a as f64 / *b as f64) * scaling_factor;
// Convert the scaled result to an integer and push it into the result coefficients
result_coeffs.push(scaled_result.round() as i64);
}
// Return a new polynomial with the resulting coefficients after division
Polynomial::new(result_coeffs)
}
}