ckks_engine/
ckks.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
use crate::polynomial::Polynomial;
use crate::keygen::{PublicKey, SecretKey};
use crate::utils::{encode, decode, mod_reduce,encode_string,decode_string,mod_reduce_string};
use log::{info};

// Struct to hold CKKS parameters
#[derive(Debug, Clone)]
pub struct CkksParameters {
    pub degree: usize,   // Polynomial degree N
    pub modulus: i64,    // Prime modulus q
}

impl CkksParameters {
    // Constructor to create new CKKS parameters
    pub fn new(degree: usize, modulus: i64) -> Self {
        CkksParameters { degree, modulus }
    }
}

// Struct for CKKS Encryptor containing public key and parameters
pub struct CKKSEncryptor {
    pub pub_key: PublicKey,   // Public key for encryption
    pub params: CkksParameters,  // Parameters for encryption
}

impl CKKSEncryptor {
    // Constructor to create a new CKKS Encryptor
    pub fn new(pub_key: PublicKey, params: CkksParameters) -> Self {
        Self { pub_key, params }
    }

    // Function to encrypt a collection of plaintext values
    pub fn encrypt_collection<T>(&self, plaintext: &[T]) -> Polynomial
    where
        T: Into<f64> + Copy,  // T can be converted into f64 and must implement Copy
    {
        let scaling_factor = 1e7; // Set scaling factor for encoding
        info!("Using scaling factor: {}", scaling_factor);
        
        // Step 2: Encode the plaintext into a polynomial
        let plaintext_f64: Vec<f64> = plaintext.iter().map(|&x| x.into()).collect();  // Convert to f64
        let encoded = encode(&plaintext_f64, scaling_factor);
        info!("Encoded plaintext: {:?}", encoded);

        // Step 3: Use public key for encryption
        let encrypted_poly: Vec<i64> = encoded.coeffs.iter()
            .zip(&self.pub_key.pk_0)
            .zip(&self.pub_key.pk_1)
            .map(|((&e, &pk0), &pk1)| e + pk0 * pk1)  // Encrypt: encoded + pk_0 * pk_1
            .collect();
        let encrypted_polynomial = Polynomial::new(encrypted_poly);
        info!("Encrypted polynomial: {:?}", encrypted_polynomial);

        // Step 4: Perform modular reduction using the prime modulus
        let ciphertext = mod_reduce(&encrypted_polynomial, self.params.modulus);

        ciphertext  // Return ciphertext
    }

    // Function to encrypt a single plaintext value
    pub fn encrypt_value<T>(&self, plaintext: T) -> Polynomial
    where
        T: Into<f64> + Copy, // Accepts a type that can be converted into f64
    {
        // Step 1: Convert the input value into a vector of f64
        let plaintext_vec: Vec<f64> = vec![plaintext.into()];

        // Step 2: Encode the plaintext into a polynomial
        let scaling_factor = 1e7; // Set a scaling factor for encoding
        let encoded = encode(&plaintext_vec, scaling_factor);
        info!("Encoded plaintext: {:?}", encoded);

        // Step 3: Use public key for encryption
        let encrypted_poly: Vec<i64> = encoded.coeffs.iter()
            .zip(&self.pub_key.pk_0)
            .zip(&self.pub_key.pk_1)
            .map(|((&e, &pk0), &pk1)| e + pk0 * pk1) // Encrypt: encoded + pk_0 * pk_1
            .collect();
        let encrypted_polynomial = Polynomial::new(encrypted_poly);
        info!("Encrypted polynomial: {:?}", encrypted_polynomial);

        // Step 4: Perform modular reduction using the prime modulus
        let ciphertext = mod_reduce(&encrypted_polynomial, self.params.modulus);

        ciphertext  // Return ciphertext
    }

    // Function to encrypt a string
    pub fn encrypt_string(&self, plaintext: &str) -> Polynomial {
        let scaling_factor = 1e9; // Set scaling factor for encoding
        
        // Step 1: Encode the plaintext string into a polynomial
        let encoded = encode_string(plaintext, scaling_factor);  // Use encode_string for string
        info!("Encoded plaintext: {:?}", encoded);
    
        // Step 2: Ensure the public keys and encoded polynomial match in length
        if self.pub_key.pk_0.len() < encoded.coeffs.len() || self.pub_key.pk_1.len() < encoded.coeffs.len() {
            panic!("Public key length is insufficient for encryption.");
        }
    
        // Step 3: Use public key for encryption
        let encrypted_poly: Vec<i64> = encoded.coeffs.iter()
            .zip(&self.pub_key.pk_0)
            .zip(&self.pub_key.pk_1)
            .map(|((e, pk0), pk1)| e + pk0 * pk1)  // Encrypt: encoded + pk_0 * pk_1
            .collect();
        
        let encrypted_polynomial = Polynomial::new(encrypted_poly);
        info!("Encrypted polynomial: {:?}", encrypted_polynomial);
    
        // Step 4: Perform modular reduction using the prime modulus
        let ciphertext = mod_reduce_string(&encrypted_polynomial, self.params.modulus);
        ciphertext  // Return ciphertext
    }
    
}

// Struct for CKKS Decryptor containing secret key and parameters
pub struct CKKSDecryptor {
    sec_key: SecretKey,   // Secret key for decryption
    params: CkksParameters,  // Parameters for decryption
}

impl CKKSDecryptor {
    // Constructor to create a new CKKS Decryptor
    pub fn new(sec_key: SecretKey, params: CkksParameters) -> Self {
        Self { sec_key, params }
    }
    //decrypt for int
    pub fn decrypt_as_int(&self, ciphertext: &Polynomial) -> Vec<i64> {
        // Log the ciphertext before decryption
        info!("Ciphertext before decryption: {:?}", ciphertext);

        // Step 1: Perform modular reduction
        let reduced_poly = mod_reduce(ciphertext, self.params.modulus);
        info!("Ciphertext after modular reduction: {:?}", reduced_poly);

        // Step 2: Apply the secret key to reverse the encryption
        let decrypted_poly: Vec<i64> = reduced_poly.coeffs.iter()
            .zip(&self.sec_key.poly)
            .map(|(&c, &sk)| c - sk) // Subtract secret key influence
            .collect();
        let decrypted_polynomial = Polynomial::new(decrypted_poly);
        info!("Decrypted polynomial (after applying secret key): {:?}", decrypted_polynomial);

        // Step 3: Decode the decrypted polynomial to get integer values
        let decoded = decrypted_polynomial.decode(); // Vec<i64>
        info!("Decoded plaintext (after decryption): {:?}", decoded);

        decoded
    }

    // Function to decrypt a ciphertext polynomial
    pub fn decrypt(&self, ciphertext: &Polynomial) -> Vec<f64> {
        // Print the ciphertext before decryption for debugging
        info!("Ciphertext before decryption: {:?}", ciphertext);

        // Step 1: Perform modular reduction to keep coefficients manageable
        let reduced_poly = mod_reduce(ciphertext, self.params.modulus);

        // Step 2: Apply the secret key to reverse the public key's effect
        let decrypted_poly: Vec<i64> = reduced_poly.coeffs.iter()
            .zip(&self.sec_key.poly)
            .map(|(&c, &sk)| c - sk)  // Subtract secret key influence
            .collect();
        let decrypted_polynomial = Polynomial::new(decrypted_poly);
        info!("Decrypted polynomial (after applying secret key): {:?}", decrypted_polynomial);

        let scaling_factor = 1e7; // Set scaling factor for decoding
        // Step 3: Decode the result and scale it back to retrieve the original value
        let decoded = decode(&decrypted_polynomial, scaling_factor);
        info!("Decoded plaintext (after decryption): {:?}", decoded);

        decoded // Return the decoded plaintext values
    }

    // Function to decrypt a ciphertext polynomial back into a string
    pub fn decrypt_string(&self, ciphertext: &Polynomial) -> String {
        let scaling_factor = 1e9; // Set scaling factor for decoding
        
        // Step 1: Perform modular reduction
        let reduced_poly = mod_reduce_string(ciphertext, self.params.modulus);
        
        // Step 2: Apply the secret key to reverse the encryption process
        let decrypted_poly: Vec<i64> = reduced_poly.coeffs.iter()
            .zip(&self.sec_key.poly)
            .map(|(&c, &sk)| c - sk)  // Subtract the secret key
            .collect();
        
        let decrypted_polynomial = Polynomial::new(decrypted_poly);
        info!("Decrypted polynomial: {:?}", decrypted_polynomial);
    
        // Step 3: Decode the polynomial back into a string
        let decoded_string = decode_string(&decrypted_polynomial, scaling_factor);  // Use decode_string for string
        decoded_string  // Return the decrypted string
    }
    
}