ckks_engine/ckks.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
use crate::polynomial::Polynomial;
use crate::keygen::{PublicKey, SecretKey};
use crate::utils::{encode, decode, mod_reduce,encode_string,decode_string,mod_reduce_string};
use log::{info};
// Struct to hold CKKS parameters
#[derive(Debug, Clone)]
pub struct CkksParameters {
pub degree: usize, // Polynomial degree N
pub modulus: i64, // Prime modulus q
}
impl CkksParameters {
// Constructor to create new CKKS parameters
pub fn new(degree: usize, modulus: i64) -> Self {
CkksParameters { degree, modulus }
}
}
// Struct for CKKS Encryptor containing public key and parameters
pub struct CKKSEncryptor {
pub pub_key: PublicKey, // Public key for encryption
pub params: CkksParameters, // Parameters for encryption
}
impl CKKSEncryptor {
// Constructor to create a new CKKS Encryptor
pub fn new(pub_key: PublicKey, params: CkksParameters) -> Self {
Self { pub_key, params }
}
// Function to encrypt a collection of plaintext values
pub fn encrypt_collection<T>(&self, plaintext: &[T]) -> Polynomial
where
T: Into<f64> + Copy, // T can be converted into f64 and must implement Copy
{
let scaling_factor = 1e7; // Set scaling factor for encoding
info!("Using scaling factor: {}", scaling_factor);
// Step 2: Encode the plaintext into a polynomial
let plaintext_f64: Vec<f64> = plaintext.iter().map(|&x| x.into()).collect(); // Convert to f64
let encoded = encode(&plaintext_f64, scaling_factor);
info!("Encoded plaintext: {:?}", encoded);
// Step 3: Use public key for encryption
let encrypted_poly: Vec<i64> = encoded.coeffs.iter()
.zip(&self.pub_key.pk_0)
.zip(&self.pub_key.pk_1)
.map(|((&e, &pk0), &pk1)| e + pk0 * pk1) // Encrypt: encoded + pk_0 * pk_1
.collect();
let encrypted_polynomial = Polynomial::new(encrypted_poly);
info!("Encrypted polynomial: {:?}", encrypted_polynomial);
// Step 4: Perform modular reduction using the prime modulus
let ciphertext = mod_reduce(&encrypted_polynomial, self.params.modulus);
ciphertext // Return ciphertext
}
// Function to encrypt a single plaintext value
pub fn encrypt_value<T>(&self, plaintext: T) -> Polynomial
where
T: Into<f64> + Copy, // Accepts a type that can be converted into f64
{
// Step 1: Convert the input value into a vector of f64
let plaintext_vec: Vec<f64> = vec![plaintext.into()];
// Step 2: Encode the plaintext into a polynomial
let scaling_factor = 1e7; // Set a scaling factor for encoding
let encoded = encode(&plaintext_vec, scaling_factor);
info!("Encoded plaintext: {:?}", encoded);
// Step 3: Use public key for encryption
let encrypted_poly: Vec<i64> = encoded.coeffs.iter()
.zip(&self.pub_key.pk_0)
.zip(&self.pub_key.pk_1)
.map(|((&e, &pk0), &pk1)| e + pk0 * pk1) // Encrypt: encoded + pk_0 * pk_1
.collect();
let encrypted_polynomial = Polynomial::new(encrypted_poly);
info!("Encrypted polynomial: {:?}", encrypted_polynomial);
// Step 4: Perform modular reduction using the prime modulus
let ciphertext = mod_reduce(&encrypted_polynomial, self.params.modulus);
ciphertext // Return ciphertext
}
// Function to encrypt a string
pub fn encrypt_string(&self, plaintext: &str) -> Polynomial {
let scaling_factor = 1e9; // Set scaling factor for encoding
// Step 1: Encode the plaintext string into a polynomial
let encoded = encode_string(plaintext, scaling_factor); // Use encode_string for string
info!("Encoded plaintext: {:?}", encoded);
// Step 2: Ensure the public keys and encoded polynomial match in length
if self.pub_key.pk_0.len() < encoded.coeffs.len() || self.pub_key.pk_1.len() < encoded.coeffs.len() {
panic!("Public key length is insufficient for encryption.");
}
// Step 3: Use public key for encryption
let encrypted_poly: Vec<i64> = encoded.coeffs.iter()
.zip(&self.pub_key.pk_0)
.zip(&self.pub_key.pk_1)
.map(|((e, pk0), pk1)| e + pk0 * pk1) // Encrypt: encoded + pk_0 * pk_1
.collect();
let encrypted_polynomial = Polynomial::new(encrypted_poly);
info!("Encrypted polynomial: {:?}", encrypted_polynomial);
// Step 4: Perform modular reduction using the prime modulus
let ciphertext = mod_reduce_string(&encrypted_polynomial, self.params.modulus);
ciphertext // Return ciphertext
}
}
// Struct for CKKS Decryptor containing secret key and parameters
pub struct CKKSDecryptor {
sec_key: SecretKey, // Secret key for decryption
params: CkksParameters, // Parameters for decryption
}
impl CKKSDecryptor {
// Constructor to create a new CKKS Decryptor
pub fn new(sec_key: SecretKey, params: CkksParameters) -> Self {
Self { sec_key, params }
}
//decrypt for int
pub fn decrypt_as_int(&self, ciphertext: &Polynomial) -> Vec<i64> {
// Log the ciphertext before decryption
info!("Ciphertext before decryption: {:?}", ciphertext);
// Step 1: Perform modular reduction
let reduced_poly = mod_reduce(ciphertext, self.params.modulus);
info!("Ciphertext after modular reduction: {:?}", reduced_poly);
// Step 2: Apply the secret key to reverse the encryption
let decrypted_poly: Vec<i64> = reduced_poly.coeffs.iter()
.zip(&self.sec_key.poly)
.map(|(&c, &sk)| c - sk) // Subtract secret key influence
.collect();
let decrypted_polynomial = Polynomial::new(decrypted_poly);
info!("Decrypted polynomial (after applying secret key): {:?}", decrypted_polynomial);
// Step 3: Decode the decrypted polynomial to get integer values
let decoded = decrypted_polynomial.decode(); // Vec<i64>
info!("Decoded plaintext (after decryption): {:?}", decoded);
decoded
}
// Function to decrypt a ciphertext polynomial
pub fn decrypt(&self, ciphertext: &Polynomial) -> Vec<f64> {
// Print the ciphertext before decryption for debugging
info!("Ciphertext before decryption: {:?}", ciphertext);
// Step 1: Perform modular reduction to keep coefficients manageable
let reduced_poly = mod_reduce(ciphertext, self.params.modulus);
// Step 2: Apply the secret key to reverse the public key's effect
let decrypted_poly: Vec<i64> = reduced_poly.coeffs.iter()
.zip(&self.sec_key.poly)
.map(|(&c, &sk)| c - sk) // Subtract secret key influence
.collect();
let decrypted_polynomial = Polynomial::new(decrypted_poly);
info!("Decrypted polynomial (after applying secret key): {:?}", decrypted_polynomial);
let scaling_factor = 1e7; // Set scaling factor for decoding
// Step 3: Decode the result and scale it back to retrieve the original value
let decoded = decode(&decrypted_polynomial, scaling_factor);
info!("Decoded plaintext (after decryption): {:?}", decoded);
decoded // Return the decoded plaintext values
}
// Function to decrypt a ciphertext polynomial back into a string
pub fn decrypt_string(&self, ciphertext: &Polynomial) -> String {
let scaling_factor = 1e9; // Set scaling factor for decoding
// Step 1: Perform modular reduction
let reduced_poly = mod_reduce_string(ciphertext, self.params.modulus);
// Step 2: Apply the secret key to reverse the encryption process
let decrypted_poly: Vec<i64> = reduced_poly.coeffs.iter()
.zip(&self.sec_key.poly)
.map(|(&c, &sk)| c - sk) // Subtract the secret key
.collect();
let decrypted_polynomial = Polynomial::new(decrypted_poly);
info!("Decrypted polynomial: {:?}", decrypted_polynomial);
// Step 3: Decode the polynomial back into a string
let decoded_string = decode_string(&decrypted_polynomial, scaling_factor); // Use decode_string for string
decoded_string // Return the decrypted string
}
}