bitvec/
slice.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
/*! A dynamically-sized view into individual bits of a memory region.

You can read the language’s [`slice` module documentation][std] here.

This module defines the [`BitSlice`] region, and all of its associated support
code.

[`BitSlice`] is the primary working type of this crate. It is a wrapper type
over `[T]` which enables you to view, manipulate, and take the address of
individual bits in memory. It behaves in every possible respect exactly like an
ordinary slice: it is dynamically-sized, and must be held by `&` or `&mut`
reference, just like `[T]`, and implements every inherent method and trait that
`[T]` does, to the absolute limits of what Rust permits.

The key to [`BitSlice`]’s powerful capability is that references to it use a
special encoding that store, in addition to the address of the base element and
the bit length, the index of the starting bit in the base element. This custom
reference encoding has some costs in what APIs are possible – for instance, Rust
forbids it from supporting `&mut BitSlice[index] = bool` write indexing – but in
exchange, enables it to be *far* more capable than any other bit-slice crate in
existence.

Because of the volume of code that must be written to match the `[T]` standard
API, this module is organized very differently than the slice implementation in
the [`core`] and [`std`] distribution libraries.

- the root module `slice` contains new APIs that have no counterpart in `[T]`
- `slice/api` contains reïmplementations of the `[T]` inherent methods
- `slice/iter` implements all of the iteration capability
- `slice/ops` implements the traits in `core::ops`
- `slice/proxy` implements the proxy reference used in place of `&mut bool`
- `slice/traits` implements all other traits not in `core::ops`
- lastly, `slice/tests` contains all the unit tests.

[`BitSlice`]: struct.BitSlice.html
[`core`]: core
[`std`]: std
[std]: https://doc.rust-lang.org/stable/std/slice
!*/

use crate::{
	access::{
		BitAccess,
		BitSafe,
	},
	devel as dvl,
	domain::{
		BitDomain,
		BitDomainMut,
		Domain,
		DomainMut,
	},
	index::BitMask,
	mem::{
		BitMemory,
		BitRegister,
	},
	mutability::{
		Const,
		Mut,
	},
	order::{
		BitOrder,
		Lsb0,
		Msb0,
	},
	ptr::{
		BitPtr,
		BitPtrRange,
		BitRef,
		BitSpan,
		BitSpanError,
	},
	store::BitStore,
};

use core::{
	marker::PhantomData,
	ops::RangeBounds,
	ptr,
	slice,
};

use funty::IsInteger;

#[cfg(feature = "alloc")]
use crate::{
	ptr::Address,
	vec::BitVec,
};

#[cfg(feature = "alloc")]
use alloc::vec::Vec;

#[cfg(feature = "alloc")]
use core::mem::ManuallyDrop;

#[cfg(feature = "alloc")]
use tap::pipe::Pipe;

/** A slice of individual bits, anywhere in memory.

`BitSlice<O, T>` is an unsized region type; you interact with it through
`&BitSlice<O, T>` and `&mut BitSlice<O, T>` references, which work exactly like
all other Rust references. As with the standard slice’s relationship to arrays
and vectors, this is [`bitvec`]’s primary working type, but you will probably
hold it through one of the provided [`BitArray`], [`BitBox`], or [`BitVec`]
containers.

`BitSlice` is conceptually a `[bool]` slice, and provides a nearly complete
mirror of `[bool]`’s API.

Every bit-vector crate can give you an opaque type that hides shift/mask
calculations from you. `BitSlice` does far more than this: it offers you the
full Rust guarantees about reference behavior, including lifetime tracking,
mutability and aliasing awareness, and explicit memory control, *as well as* the
full set of tools and APIs available to the standard `[bool]` slice type.
`BitSlice` can arbitrarily split and subslice, just like `[bool]`. You can write
a linear consuming function and keep the patterns you already know.

For example, to trim all the bits off either edge that match a condition, you
could write

```rust
use bitvec::prelude::*;

fn trim<O: BitOrder, T: BitStore>(
  bits: &BitSlice<O, T>,
  to_trim: bool,
) -> &BitSlice<O, T> {
  let stop = |b: &bool| *b != to_trim;
  let front = bits.iter().by_ref().position(stop).unwrap_or(0);
  let back = bits.iter().by_ref().rposition(stop).unwrap_or(0);
  &bits[front ..= back]
}
# assert_eq!(trim(bits![0, 0, 1, 1, 0, 1, 0], false), bits![1, 1, 0, 1]);
```

to get behavior something like
`trim(&BitSlice[0, 0, 1, 1, 0, 1, 0], false) == &BitSlice[1, 1, 0, 1]`.

# Documentation

All APIs that mirror something in the standard library will have an `Original`
section linking to the corresponding item. All APIs that have a different
signature or behavior than the original will have an `API Differences` section
explaining what has changed, and how to adapt your existing code to the change.

These sections look like this:

# Original

[`slice`](https://doc.rust-lang.org/stable/std/primitive.slice.html)

# API Differences

The slice type `[bool]` has no type parameters. `BitSlice<O, T>` has two: one
for the memory type used as backing storage, and one for the order of bits
within that memory type.

`&BitSlice<O, T>` is capable of producing `&bool` references to read bits out
of its memory, but is not capable of producing `&mut bool` references to write
bits *into* its memory. Any `[bool]` API that would produce a `&mut bool` will
instead produce a [`BitRef<Mut, O, T>`] proxy reference.

# Behavior

`BitSlice` is a wrapper over `[T]`. It describes a region of memory, and must be
handled indirectly. This is most commonly through the reference types
`&BitSlice` and `&mut BitSlice`, which borrow memory owned by some other value
in the program. These buffers can be directly owned by the sibling types
[`BitBox`], which behaves like [`Box<[T]>`](alloc::boxed::Box), and [`BitVec`],
which behaves like [`Vec<T>`]. It cannot be used as the type parameter to a
standard-library-provided handle type.

The `BitSlice` region provides access to each individual bit in the region, as
if each bit had a memory address that you could use to dereference it. It packs
each logical bit into exactly one bit of storage memory, just like
[`std::bitset`] and [`std::vector<bool>`] in C++.

# Type Parameters

`BitSlice` has two type parameters which propagate through nearly every public
API in the crate. These are very important to its operation, and your choice
of type arguments informs nearly every part of this library’s behavior.

## `T: BitStore`

[`BitStore`] is the simpler of the two parameters. It refers to the integer type
used to hold bits. It must be one of the Rust unsigned integer fundamentals:
`u8`, `u16`, `u32`, `usize`, and on 64-bit systems only, `u64`. In addition, it
can also be an alias-safed wrapper over them (see the [`access`] module) in
order to permit bit-slices to share underlying memory without interfering with
each other.

`BitSlice` references can only be constructed over the integers, not over their
aliasing wrappers. `BitSlice` will only use aliasing types in its `T` slots when
you invoke APIs that produce them, such as [`.split_at_mut()`].

The default type argument is `usize`.

The argument you choose is used as the basis of a `[T]` slice, over which the
`BitSlice` view type is placed. `BitSlice<_, T>` is subject to all of the rules
about alignment that `[T]` is. If you are working with in-memory representation
formats, chances are that you already have a `T` type with which you’ve been
working, and should use it here.

If you are only using this crate to discard the seven wasted bits per `bool`
of a collection of `bool`s, and are not too concerned about the in-memory
representation, then you should use the default type argument of `usize`. This
is because most processors work best when moving an entire `usize` between
memory and the processor itself, and using a smaller type may cause it to slow
down.

## `O: BitOrder`

[`BitOrder`] is the more complex parameter. It has a default argument which,
like `usize`, is the good-enough choice when you do not explicitly need to
control the representation of bits in memory.

This parameter determines how to index the bits within a single memory element
`T`. Computers all agree that in a slice of elements `T`, the element with the
lower index has a lower memory address than the element with the higher index.
But the individual bits within an element do not have addresses, and so there is
no uniform standard of which bit is the zeroth, which is the first, which is the
penultimate, and which is the last.

To make matters even more confusing, there are two predominant ideas of
in-element ordering that often *correlate* with the in-element *byte* ordering
of integer types, but are in fact wholly unrelated! [`bitvec`] provides these
two main orders as types for you, and if you need a different one, it also
provides the tools you need to make your own.

### Least Significant Bit Comes First

This ordering, named the [`Lsb0`] type, indexes bits within an element by
placing the `0` index at the least significant bit (numeric value `1`) and the
final index at the most significant bit (numeric value [`T::MIN`][minval] for
signed integers on most machines).

For example, this is the ordering used by most C compilers to lay out bit-field
struct members on little-endian **byte**-ordered machines.

### Most Significant Bit Comes First

This ordering, named the [`Msb0`] type, indexes bits within an element by
placing the `0` index at the most significant bit (numeric value
[`T::MIN`][minval] for most signed integers) and the final index at the least
significant bit (numeric value `1`).

For example, this is the ordering used by the [TCP wire format], and by most C
compilers to lay out bit-field struct members on big-endian **byte**-ordered
machines.

### Default Ordering

The default ordering is [`Lsb0`], as it typically produces shorter object code
than [`Msb0`] does. If you are implementing a collection, then `Lsb0` is likely
the more performant ordering; if you are implementing a buffer protocol, then
your choice of ordering is dictated by the protocol definition.

# Safety

`BitSlice` is designed to never introduce new memory unsafety that you did not
provide yourself, either before or during the use of this crate. Bugs do, and
have, occured, and you are encouraged to submit any discovered flaw as a defect
report.

The `&BitSlice` reference type uses a private encoding scheme to hold all the
information needed in its stack value. This encoding is **not** part of the
public API of the library, and is not binary-compatible with `&[T]`.
Furthermore, in order to satisfy Rust’s requirements about alias conditions,
`BitSlice` performs type transformations on the `T` parameter to ensure that it
never creates the potential for undefined behavior.

You must never attempt to type-cast a reference to `BitSlice` in any way. You
must not use [`mem::transmute`] with `BitSlice` anywhere in its type arguments.
You must not use `as`-casting to convert between `*BitSlice` and any other type.
You must not attempt to modify the binary representation of a `&BitSlice`
reference value. These actions will all lead to runtime memory unsafety, are
(hopefully) likely to induce a program crash, and may possibly cause undefined
behavior at compile-time.

Everything in the `BitSlice` public API, even the `unsafe` parts, are guaranteed
to have no more unsafety than their equivalent parts in the standard library.
All `unsafe` APIs will have documentation explicitly detailing what the API
requires you to uphold in order for it to function safely and correctly. All
safe APIs will do so themselves.

# Performance

Like the standard library’s `[T]` slice, `BitSlice` is designed to be very easy
to use safely, while supporting `unsafe` when necessary. Rust has a powerful
optimizing engine, and `BitSlice` will frequently be compiled to have zero
runtime cost. Where it is slower, it will not be significantly slower than a
manual replacement.

As the machine instructions operate on registers rather than bits, your choice
of [`T: BitStore`] type parameter can influence your slice’s performance. Using
larger register types means that slices can gallop over completely-filled
interior elements faster, while narrower register types permit more graceful
handling of subslicing and aliased splits.

# Construction

`BitSlice` views of memory can be constructed over borrowed data in a number of
ways. As this is a reference-only type, it can only ever be built by borrowing
an existing memory buffer and taking temporary control of your program’s view of
the region.

## Macro Constructor

`BitSlice` buffers can be constructed at compile-time through the [`bits!`]
macro. This macro accepts a superset of the [`vec!`] arguments, and creates an
appropriate buffer in the local scope. The macro expands to a borrowed
[`BitArray`] temporary; currently, it cannot be assigned to a `static` binding.

```rust
use bitvec::prelude::*;

let immut = bits![Lsb0, u8; 0, 1, 0, 0, 1, 0, 0, 1];
let mutable: &mut BitSlice<_, _> = bits![mut Msb0, u8; 0; 8];

assert_ne!(immut, mutable);
mutable.clone_from_bitslice(immut);
assert_eq!(immut, mutable);
```

## Borrowing Constructors

The functions [`from_element`], [`from_element_mut`], [`from_slice`], and
[`from_slice_mut`] take references to existing memory, and construct
`BitSlice` references over them. These are the most basic ways to borrow memory
and view it as bits.

```rust
use bitvec::prelude::*;

let data = [0u16; 3];
let local_borrow = BitSlice::<Lsb0, _>::from_slice(&data);

let mut data = [0u8; 5];
let local_mut = BitSlice::<Lsb0, _>::from_slice_mut(&mut data);
```

## Trait Method Constructors

The [`BitView`] trait implements [`.view_bits::<O>()`] and
[`.view_bits_mut::<O>()`] methods on elements, arrays not larger than 64
elements, and slices. This trait, imported in the crate prelude, is *probably*
the easiest way for you to borrow memory.

```rust
use bitvec::prelude::*;

let data = [0u32; 5];
let trait_view = data.view_bits::<Lsb0>();

let mut data = 0usize;
let trait_mut = data.view_bits_mut::<Msb0>();
```

## Owned Bit Slices

If you wish to take ownership of a memory region and enforce that it is always
viewed as a `BitSlice` by default, you can use one of the [`BitArray`],
[`BitBox`], or [`BitVec`] types, rather than pairing ordinary buffer types with
the borrowing constructors.

```rust
use bitvec::prelude::*;

let slice = bits![0; 27];
let array = bitarr![LocalBits, u8; 0; 10];
# #[cfg(feature = "alloc")] fn allocs() {
let boxed = bitbox![0; 10];
let vec = bitvec![0; 20];
# } #[cfg(feature = "alloc")] allocs();

// arrays always round up
assert_eq!(array.as_bitslice(), slice[.. 16]);
# #[cfg(feature = "alloc")] fn allocs2() {
# let slice = bits![0; 27];
# let boxed = bitbox![0; 10];
# let vec = bitvec![0; 20];
assert_eq!(boxed.as_bitslice(), slice[.. 10]);
assert_eq!(vec.as_bitslice(), slice[.. 20]);
# } #[cfg(feature = "alloc")] allocs2();
```

[TCP wire format]: https://en.wikipedia.org/wiki/Transmission_Control_Protocol#TCP_segment_structure
[minval]: https://doc.rust-lang.org/stable/std/primitive.usize.html#associatedconstant.MIN

[`BitArray`]: crate::array::BitArray
[`BitBox`]: crate::boxed::BitBox
[`BitRef<Mut, O, T>`]: crate::ptr::BitRef
[`BitOrder`]: crate::order::BitOrder
[`BitStore`]: crate::store::BitStore
[`BitVec`]: crate::vec::BitVec
[`BitView`]: crate::view::BitView
[`Cell<T>`]: core::cell::Cell
[`Lsb0`]: crate::order::Lsb0
[`Msb0`]: crate::order::Msb0
[`T: BitStore`]: crate::store::BitStore
[`Vec<T>`]: alloc::vec::Vec

[`access`]: crate::access
[`bits!`]: macro@crate::bits
[`bitvec`]: crate
[`bitvec::prelude::LocalBits`]: crate::order::LocalBits
[`from_element`]: Self::from_element
[`from_element_mut`]: Self::from_element_mut
[`from_slice`]: Self::from_slice
[`from_slice_mut`]: Self::from_slice_mut
[`mem::transmute`]: core::mem::transmute
[`std::bitset`]: https://en.cppreference.com/w/cpp/utility/bitset
[`std::vector<bool>`]: https://en.cppreference.com/w/cpp/container/vector_bool
[`vec!`]: macro@alloc::vec

[`.split_at_mut()`]: Self::split_at_mut
[`.view_bits::<O>()`]: crate::view::BitView::view_bits
[`.view_bits_mut::<O>()`]: crate::view::BitView::view_bits_mut
**/
#[repr(transparent)]
pub struct BitSlice<O = Lsb0, T = usize>
where
	O: BitOrder,
	T: BitStore,
{
	/// The ordering of bits within a register `T`.
	_ord: PhantomData<O>,
	/// The register type used for storage.
	_typ: PhantomData<[T]>,
	/// Indicate that this is a newtype wrapper over a wholly-untyped slice.
	///
	/// This is necessary in order for the Rust compiler to remove restrictions
	/// on the possible values of references to this slice `&BitSlice` and
	/// `&mut BitSlice`.
	///
	/// Rust has firm requirements that *any* reference that is directly usable
	/// to dereference a real value must conform to its rules about address
	/// liveness, type alignment, and for slices, trustworthy length. It is
	/// undefined behavior for a slice reference *to a dereferencable type* to
	/// violate any of these restrictions.
	///
	/// However, the value of a reference to a zero-sized type has *no* such
	/// restrictions, because that reference can never perform direct memory
	/// access. The compiler will accept any value in a slot typed as `&[()]`,
	/// because the values in it will never be used for a load or store
	/// instruction. If this were `[T]`, then Rust would make the pointer
	/// encoding used to manage values of `&BitSlice` become undefined behavior.
	///
	/// See the `ptr` module for information on the encoding used.
	_mem: [()],
}

/// General-purpose functions not present on `[T]`.
impl<O, T> BitSlice<O, T>
where
	O: BitOrder,
	T: BitStore,
{
	/// Constructs a shared `&BitSlice` reference over a shared element.
	///
	/// The [`BitView`] trait, implemented on all [`BitStore`] implementors,
	/// provides a method [`.view_bits::<O>()`] which delegates to this function
	/// and may be more convenient for you to write.
	///
	/// # Parameters
	///
	/// - `elem`: A shared reference to a memory element.
	///
	/// # Returns
	///
	/// A shared `&BitSlice` over the `elem` element.
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::prelude::*;
	///
	/// let elem = 0u8;
	/// let bits = BitSlice::<Lsb0, _>::from_element(&elem);
	/// assert_eq!(bits.len(), 8);
	/// ```
	///
	/// [`BitStore`]: crate::store::BitStore
	/// [`BitView`]: crate::view::BitView
	/// [`.view_bits::<O>()`]: crate::view::BitView::view_bits
	pub fn from_element(elem: &T) -> &Self {
		unsafe { BitPtr::from_ref(elem).span_unchecked(T::Mem::BITS as usize) }
			.to_bitslice_ref()
	}

	/// Constructs an exclusive `&mut BitSlice` reference over an element.
	///
	/// The [`BitView`] trait, implemented on all [`BitStore`] implementors,
	/// provides a method [`.view_bits_mut::<O>()`] which delegates to this
	/// function and may be more convenient for you to write.
	///
	/// # Parameters
	///
	/// - `elem`: An exclusive reference to a memory element.
	///
	/// # Returns
	///
	/// An exclusive `&mut BitSlice` over the `elem` element.
	///
	/// Note that the original `elem` reference will be inaccessible for the
	/// duration of the returned slice handle’s lifetime.
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::prelude::*;
	///
	/// let mut elem = 0u16;
	/// let bits = BitSlice::<Msb0, _>::from_element_mut(&mut elem);
	/// bits.set(15, true);
	/// assert!(bits.get(15).unwrap());
	/// assert_eq!(elem, 1);
	/// ```
	///
	/// [`BitStore`]: crate::store::BitStore
	/// [`BitView`]: crate::view::BitView
	/// [`.view_bits_mut::<O>()`]: crate::view::BitView::view_bits_mut
	pub fn from_element_mut(elem: &mut T) -> &mut Self {
		unsafe { BitPtr::from_mut(elem).span_unchecked(T::Mem::BITS as usize) }
			.to_bitslice_mut()
	}

	/// Constructs a shared `&BitSlice` reference over a slice.
	///
	/// The [`BitView`] trait, implemented on all `[T]` slices, provides a
	/// method [`.view_bits::<O>()`] which delegates to this function and may be
	/// more convenient for you to write.
	///
	/// # Parameters
	///
	/// - `slice`: A shared reference over a sequence of memory elements.
	///
	/// # Returns
	///
	/// A `&BitSlice` view of the provided slice. The error condition is only
	/// encountered if the source slice is too long to be encoded in a
	/// `&BitSlice` handle, but such a slice is likely impossible to produce
	/// without causing errors long before calling this function.
	///
	/// # Conditions
	///
	/// The produced `&BitSlice` handle always begins at the zeroth bit of the
	/// zeroth element in `slice`.
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::prelude::*;
	///
	/// let slice = &[0u8, 1];
	/// let bits = BitSlice::<Msb0, _>::from_slice(slice).unwrap();
	/// assert!(bits[15]);
	/// ```
	///
	/// An example showing this function failing would require a slice exceeding
	/// `!0usize >> 3` bytes in size, which is infeasible to produce.
	///
	/// [`BitView`]: crate::view::BitView
	/// [`MAX_ELTS`]: Self::MAX_ELTS
	/// [`.view_bits::<O>()`]: crate::view::BitView::view_bits
	pub fn from_slice(slice: &[T]) -> Result<&Self, BitSpanError<T>> {
		let elts = slice.len();
		//  Starting at the zeroth bit makes this counter an exclusive cap, not
		//  an inclusive cap. This is also pretty much impossible to hit.
		if elts >= Self::MAX_ELTS {
			return Err(BitSpanError::TooLong(
				elts.saturating_mul(T::Mem::BITS as usize),
			));
		}
		Ok(unsafe { Self::from_slice_unchecked(slice) })
	}

	/// Constructs an exclusive `&mut BitSlice` reference over a slice.
	///
	/// The [`BitView`] trait, implemented on all `[T]` slices, provides a
	/// method [`.view_bits_mut::<O>()`] which delegates to this function and
	/// may be more convenient for you to write.
	///
	/// # Parameters
	///
	/// - `slice`: An exclusive reference over a sequence of memory elements.
	///
	/// # Returns
	///
	/// A `&mut BitSlice` view of the provided slice. The error condition is
	/// only encountered if the source slice is too long to be encoded in a
	/// `&mut BitSlice` handle, but such a slice is likely impossible to produce
	/// without causing errors long before calling this function.
	///
	/// Note that the original `slice` reference will be inaccessible for the
	/// duration of the returned slice handle’s lifetime.
	///
	/// # Conditions
	///
	/// The produced `&mut BitSlice` handle always begins at the zeroth bit of
	/// the zeroth element in `slice`.
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::prelude::*;
	///
	/// let mut slice = [0u8; 2];
	/// let bits = BitSlice::<Lsb0, _>::from_slice_mut(&mut slice).unwrap();
	///
	/// assert!(!bits[0]);
	/// bits.set(0, true);
	/// assert!(bits[0]);
	/// assert_eq!(slice[0], 1);
	/// ```
	///
	/// This example attempts to construct a `&mut BitSlice` handle from a slice
	/// that is too large to index. Either the `vec!` allocation will fail, or
	/// the bit-slice constructor will fail.
	///
	/// ```rust,should_panic
	/// # #[cfg(feature = "alloc")] {
	/// use bitvec::prelude::*;
	///
	/// let mut data = vec![0usize; BitSlice::<Lsb0, usize>::MAX_ELTS];
	/// let bits = BitSlice::<Lsb0, _>::from_slice_mut(&mut data[..]).unwrap();
	/// # }
	/// # #[cfg(not(feature = "alloc"))] panic!("No allocator present");
	/// ```
	///
	/// [`BitView`]: crate::view::BitView
	/// [`MAX_ELTS`]: Self::MAX_ELTS
	/// [`.view_bits_mut::<O>()`]: crate::view::BitView::view_bits_mut
	pub fn from_slice_mut(
		slice: &mut [T],
	) -> Result<&mut Self, BitSpanError<T>> {
		let elts = slice.len();
		if elts >= Self::MAX_ELTS {
			return Err(BitSpanError::TooLong(
				elts.saturating_mul(T::Mem::BITS as usize),
			));
		}
		Ok(unsafe { Self::from_slice_unchecked_mut(slice) })
	}

	/// Converts a slice reference into a `BitSlice` reference without checking
	/// that its size can be safely used.
	///
	/// # Safety
	///
	/// If the `slice` length is longer than [`MAX_ELTS`], then the returned
	/// `BitSlice` will have its length severely truncated. This is not a safety
	/// violation, but it is behavior that callers must avoid to remain correct.
	///
	/// Prefer [`::from_slice()`].
	///
	/// [`MAX_ELTS`]: Self::MAX_ELTS
	/// [`::from_slice()`]: Self::from_slice
	pub unsafe fn from_slice_unchecked(slice: &[T]) -> &Self {
		let bits = slice.len().wrapping_mul(T::Mem::BITS as usize);
		BitPtr::from_slice(slice)
			.span_unchecked(bits)
			.to_bitslice_ref()
	}

	/// Converts a slice reference into a `BitSlice` reference without checking
	/// that its size can be safely used.
	///
	/// # Safety
	///
	/// If the `slice` length is longer than [`MAX_ELTS`], then the returned
	/// `BitSlice` will have its length severely truncated. This is not a safety
	/// violation, but it is behavior that callers must avoid to remain correct.
	///
	/// Prefer [`::from_slice_mut()`].
	///
	/// [`MAX_ELTS`]: Self::MAX_ELTS
	/// [`::from_slice_mut()`]: Self::from_slice_mut
	pub unsafe fn from_slice_unchecked_mut(slice: &mut [T]) -> &mut Self {
		let bits = slice.len().wrapping_mul(T::Mem::BITS as usize);
		BitPtr::from_mut_slice(slice)
			.span_unchecked(bits)
			.to_bitslice_mut()
	}

	/// Produces the empty slice reference.
	///
	/// This is equivalent to `&[]` for ordinary slices.
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::prelude::*;
	///
	/// let bits: &BitSlice = BitSlice::empty();
	/// assert!(bits.is_empty());
	/// ```
	pub fn empty<'a>() -> &'a Self {
		BitSpan::<Const, O, T>::EMPTY.to_bitslice_ref()
	}

	/// Produces the empty mutable slice reference.
	///
	/// This is equivalent to `&mut []` for ordinary slices.
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::prelude::*;
	///
	/// let bits: &mut BitSlice = BitSlice::empty_mut();
	/// assert!(bits.is_empty());
	/// ```
	pub fn empty_mut<'a>() -> &'a mut Self {
		BitSpan::EMPTY.to_bitslice_mut()
	}

	/// Writes a new bit at a given index.
	///
	/// # Parameters
	///
	/// - `&mut self`
	/// - `index`: The bit index at which to write. It must be in the range `0
	///   .. self.len()`.
	/// - `value`: The value to be written; `true` for `1` or `false` for `0`.
	///
	/// # Effects
	///
	/// If `index` is valid, then the bit to which it refers is set to `value`.
	///
	/// # Panics
	///
	/// This method panics if `index` is not less than [`self.len()`].
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::prelude::*;
	///
	/// let bits = bits![mut 0];
	///
	/// assert!(!bits[0]);
	/// bits.set(0, true);
	/// assert!(bits[0]);
	/// ```
	///
	/// This example panics when it attempts to set a bit that is out of bounds.
	///
	/// ```rust,should_panic
	/// use bitvec::prelude::*;
	///
	/// let bits = bits![mut 0];
	/// bits.set(1, false);
	/// ```
	///
	/// [`self.len()`]: Self::len
	pub fn set(&mut self, index: usize, value: bool) {
		self.assert_in_bounds(index);
		unsafe {
			self.set_unchecked(index, value);
		}
	}

	/// Writes a new bit at a given index.
	///
	/// This method supports writing through a shared reference to a bit that
	/// may be observed by other `BitSlice` handles. It is only present when the
	/// `T` type parameter supports such shared mutation (measured by the
	/// [`Radium`] trait).
	///
	/// # Parameters
	///
	/// - `&self`
	/// - `index`: The bit index at which to write. It must be in the range `0
	///   .. self.len()`.
	/// - `value`: The value to be written; `true` for `1` or `false` for `0`.
	///
	/// # Effects
	///
	/// If `index` is valid, then the bit to which it refers is set to `value`.
	/// If `T` is an [atomic], this will lock the memory bus for the referent
	/// address, and may cause stalls.
	///
	/// # Panics
	///
	/// This method panics if `index` is not less than [`self.len()`].
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::prelude::*;
	/// use core::cell::Cell;
	///
	/// let byte = Cell::new(0u8);
	/// let bits = byte.view_bits::<Msb0>();
	/// let bits_2 = bits;
	///
	/// bits.set_aliased(1, true);
	/// assert!(bits_2[1]);
	/// ```
	///
	/// This example panics when it attempts to set a bit that is out of bounds.
	///
	/// ```rust,should_panic
	/// use bitvec::prelude::*;
	/// use core::cell::Cell;
	///
	/// let byte = Cell::new(0u8);
	/// let bits = byte.view_bits::<Lsb0>();
	/// bits.set_aliased(8, false);
	/// ```
	///
	/// [atomic]: core::sync::atomic
	/// [`Radium`]: radium::Radium
	/// [`self.len()`]: Self::len
	pub fn set_aliased(&self, index: usize, value: bool)
	where T: radium::Radium {
		self.assert_in_bounds(index);
		unsafe {
			self.set_aliased_unchecked(index, value);
		}
	}

	/// Tests if *any* bit in the slice is set (logical `∨`).
	///
	/// # Truth Table
	///
	/// ```text
	/// 0 0 => 0
	/// 0 1 => 1
	/// 1 0 => 1
	/// 1 1 => 1
	/// ```
	///
	/// # Parameters
	///
	/// - `&self`
	///
	/// # Returns
	///
	/// Whether any bit in the slice domain is set. The empty slice returns
	/// `false`.
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::prelude::*;
	///
	/// let bits = bits![0, 1, 0, 0];
	/// assert!(bits[.. 2].any());
	/// assert!(!bits[2 ..].any());
	/// ```
	pub fn any(&self) -> bool {
		match self.domain() {
			Domain::Enclave { head, elem, tail } => {
				O::mask(head, tail) & elem.load_value() != BitMask::ZERO
			},
			Domain::Region { head, body, tail } => {
				head.map_or(false, |(head, elem)| {
					O::mask(head, None) & elem.load_value() != BitMask::ZERO
				}) || body.iter().any(|e| e.load_value() != T::Mem::ZERO)
					|| tail.map_or(false, |(elem, tail)| {
						O::mask(None, tail) & elem.load_value() != BitMask::ZERO
					})
			},
		}
	}

	/// Tests if *all* bits in the slice domain are set (logical `∧`).
	///
	/// # Truth Table
	///
	/// ```text
	/// 0 0 => 0
	/// 0 1 => 0
	/// 1 0 => 0
	/// 1 1 => 1
	/// ```
	///
	/// # Parameters
	///
	/// - `&self`
	///
	/// # Returns
	///
	/// Whether all bits in the slice domain are set. The empty slice returns
	/// `true`.
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::prelude::*;
	///
	/// let bits = bits![1, 1, 0, 1];
	/// assert!(bits[.. 2].all());
	/// assert!(!bits[2 ..].all());
	/// ```
	pub fn all(&self) -> bool {
		match self.domain() {
			Domain::Enclave { head, elem, tail } => {
				/* Due to a bug in `rustc`, calling `.value()` on the two
				`BitMask` types, to use `T::Mem | T::Mem == T::Mem`, causes type
				resolution failure and only discovers the
				`for<'a> BitOr<&'a Self>` implementation in the trait bounds
				`T::Mem: BitMemory: IsUnsigned: BitOr<Self> + for<'a> BitOr<&'a Self>`.

				Until this is fixed, routing through the `BitMask`
				implementation suffices. The by-val and by-ref operator traits
				are at the same position in the bounds chain, making this quite
				a strange bug.
				*/
				!O::mask(head, tail) | elem.load_value() == BitMask::ALL
			},
			Domain::Region { head, body, tail } => {
				head.map_or(true, |(head, elem)| {
					!O::mask(head, None) | elem.load_value() == BitMask::ALL
				}) && body
					.iter()
					.map(BitStore::load_value)
					.all(|e| e == T::Mem::ALL)
					&& tail.map_or(true, |(elem, tail)| {
						!O::mask(None, tail) | elem.load_value() == BitMask::ALL
					})
			},
		}
	}

	/// Tests if *all* bits in the slice are unset (logical `¬∨`).
	///
	/// # Truth Table
	///
	/// ```text
	/// 0 0 => 1
	/// 0 1 => 0
	/// 1 0 => 0
	/// 1 1 => 0
	/// ```
	///
	/// # Parameters
	///
	/// - `&self`
	///
	/// # Returns
	///
	/// Whether all bits in the slice domain are unset.
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::prelude::*;
	///
	/// let bits = bits![0, 1, 0, 0];
	/// assert!(!bits[.. 2].not_any());
	/// assert!(bits[2 ..].not_any());
	/// ```
	pub fn not_any(&self) -> bool {
		!self.any()
	}

	/// Tests if *any* bit in the slice is unset (logical `¬∧`).
	///
	/// # Truth Table
	///
	/// ```text
	/// 0 0 => 1
	/// 0 1 => 1
	/// 1 0 => 1
	/// 1 1 => 0
	/// ```
	///
	/// # Parameters
	///
	/// - `&self`
	///
	/// # Returns
	///
	/// Whether any bit in the slice domain is unset.
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::prelude::*;
	///
	/// let bits = bits![1, 1, 0, 1];
	/// assert!(!bits[.. 2].not_all());
	/// assert!(bits[2 ..].not_all());
	/// ```
	pub fn not_all(&self) -> bool {
		!self.all()
	}

	/// Tests whether the slice has some, but not all, bits set and some, but
	/// not all, bits unset.
	///
	/// This is `false` if either [`.all()`] or [`.not_any()`] are `true`.
	///
	/// # Truth Table
	///
	/// ```text
	/// 0 0 => 0
	/// 0 1 => 1
	/// 1 0 => 1
	/// 1 1 => 0
	/// ```
	///
	/// # Parameters
	///
	/// - `&self`
	///
	/// # Returns
	///
	/// Whether the slice domain has mixed content. The empty slice returns
	/// `false`.
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::prelude::*;
	///
	/// let data = 0b111_000_10u8;
	/// let bits = bits![1, 1, 0, 0, 1, 0];
	///
	/// assert!(!bits[.. 2].some());
	/// assert!(!bits[2 .. 4].some());
	/// assert!(bits.some());
	/// ```
	///
	/// [`.all()`]: Self::all
	/// [`.not_any()`]: Self::not_any
	pub fn some(&self) -> bool {
		self.any() && self.not_all()
	}

	/// Counts the number of bits set to `1` in the slice contents.
	///
	/// # Parameters
	///
	/// - `&self`
	///
	/// # Returns
	///
	/// The number of bits in the slice domain that are set to `1`.
	///
	/// # Examples
	///
	/// Basic usage:
	///
	/// ```rust
	/// use bitvec::prelude::*;
	///
	/// let bits = bits![1, 1, 0, 0];
	/// assert_eq!(bits[.. 2].count_ones(), 2);
	/// assert_eq!(bits[2 ..].count_ones(), 0);
	/// ```
	pub fn count_ones(&self) -> usize {
		match self.domain() {
			Domain::Enclave { head, elem, tail } => (O::mask(head, tail)
				& elem.load_value())
			.value()
			.count_ones() as usize,
			Domain::Region { head, body, tail } => {
				head.map_or(0, |(head, elem)| {
					(O::mask(head, None) & elem.load_value())
						.value()
						.count_ones() as usize
				}) + body
					.iter()
					.map(BitStore::load_value)
					.map(|e| e.count_ones() as usize)
					.sum::<usize>() + tail.map_or(0, |(elem, tail)| {
					(O::mask(None, tail) & elem.load_value())
						.value()
						.count_ones() as usize
				})
			},
		}
	}

	/// Counts the number of bits cleared to `0` in the slice contents.
	///
	/// # Parameters
	///
	/// - `&self`
	///
	/// # Returns
	///
	/// The number of bits in the slice domain that are cleared to `0`.
	///
	/// # Examples
	///
	/// Basic usage:
	///
	/// ```rust
	/// use bitvec::prelude::*;
	///
	/// let bits = bits![1, 1, 0, 0];
	/// assert_eq!(bits[.. 2].count_zeros(), 0);
	/// assert_eq!(bits[2 ..].count_zeros(), 2);
	/// ```
	pub fn count_zeros(&self) -> usize {
		match self.domain() {
			Domain::Enclave { head, elem, tail } => (!O::mask(head, tail)
				| elem.load_value())
			.value()
			.count_zeros() as usize,
			Domain::Region { head, body, tail } => {
				head.map_or(0, |(head, elem)| {
					(!O::mask(head, None) | elem.load_value())
						.value()
						.count_zeros() as usize
				}) + body
					.iter()
					.map(BitStore::load_value)
					.map(|e| e.count_zeros() as usize)
					.sum::<usize>() + tail.map_or(0, |(elem, tail)| {
					(!O::mask(None, tail) | elem.load_value())
						.value()
						.count_zeros() as usize
				})
			},
		}
	}

	/// Enumerates all bits in a `BitSlice` that are set to `1`.
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::prelude::*;
	///
	/// let bits = bits![0, 1, 0, 0, 1, 0, 0, 0, 1];
	/// let mut indices = [1, 4, 8].iter().copied();
	///
	/// let mut iter_ones = bits.iter_ones();
	/// let mut compose = bits.iter()
	///   .copied()
	///   .enumerate()
	///   .filter_map(|(idx, bit)| if bit { Some(idx) } else { None });
	///
	/// for ((a, b), c) in iter_ones.zip(compose).zip(indices) {
	///   assert_eq!(a, b);
	///   assert_eq!(b, c);
	/// }
	/// ```
	#[inline(always)]
	#[cfg(not(tarpaulin_include))]
	pub fn iter_ones(&self) -> IterOnes<O, T> {
		IterOnes::new(self)
	}

	/// Enumerates all bits in a `BitSlice` that are cleared to `0`.
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::prelude::*;
	///
	/// let bits = bits![1, 0, 1, 1, 0, 1, 1, 1, 0];
	/// let mut indices = [1, 4, 8].iter().copied();
	///
	/// let mut iter_zeros = bits.iter_zeros();
	/// let mut compose = bits.iter()
	///   .copied()
	///   .enumerate()
	///   .filter_map(|(idx, bit)| if !bit { Some(idx) } else { None });
	///
	/// for ((a, b), c) in iter_zeros.zip(compose).zip(indices) {
	///   assert_eq!(a, b);
	///   assert_eq!(b, c);
	/// }
	/// ```
	#[inline(always)]
	#[cfg(not(tarpaulin_include))]
	pub fn iter_zeros(&self) -> IterZeros<O, T> {
		IterZeros::new(self)
	}

	/// Gets the index of the first bit in the bit-slice set to `1`.
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::prelude::*;
	///
	/// assert!(bits![].first_one().is_none());
	/// assert_eq!(bits![0, 0, 1].first_one().unwrap(), 2);
	/// ```
	#[inline]
	pub fn first_one(&self) -> Option<usize> {
		self.iter_ones().next()
	}

	/// Gets the index of the first bit in the bit-slice set to `0`.
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::prelude::*;
	///
	/// assert!(bits![].first_zero().is_none());
	/// assert_eq!(bits![1, 1, 0].first_zero().unwrap(), 2);
	/// ```
	#[inline]
	pub fn first_zero(&self) -> Option<usize> {
		self.iter_zeros().next()
	}

	/// Gets the index of the last bit in the bit-slice set to `1`.
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::prelude::*;
	///
	/// assert!(bits![].last_one().is_none());
	/// assert_eq!(bits![1, 0, 0, 1].last_one().unwrap(), 3);
	/// ```
	#[inline]
	pub fn last_one(&self) -> Option<usize> {
		self.iter_ones().next_back()
	}

	/// Gets the index of the last bit in the bit-slice set to `0`.
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::prelude::*;
	///
	/// assert!(bits![].last_zero().is_none());
	/// assert_eq!(bits![0, 1, 1, 0].last_zero().unwrap(), 3);
	/// ```
	#[inline]
	pub fn last_zero(&self) -> Option<usize> {
		self.iter_zeros().next_back()
	}

	/// Counts the number of bits from the start of the bit-slice to the first
	/// bit set to `0`.
	///
	/// This returns `0` if the bit-slice is empty.
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::prelude::*;
	///
	/// assert_eq!(bits![].leading_ones(), 0);
	/// assert_eq!(bits![0].leading_ones(), 0);
	/// assert_eq!(bits![1, 0, 1, 1].leading_ones(), 1);
	/// assert_eq!(bits![1, 1, 1, 1].leading_ones(), 4);
	/// ```
	#[inline]
	pub fn leading_ones(&self) -> usize {
		self.first_zero().unwrap_or(self.len())
	}

	/// Counts the number of bits from the start of the bit-slice to the first
	/// bit set to `1`.
	///
	/// This returns `0` if the bit-slice is empty.
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::prelude::*;
	///
	/// assert_eq!(bits![].leading_zeros(), 0);
	/// assert_eq!(bits![1].leading_zeros(), 0);
	/// assert_eq!(bits![0, 1, 0, 0].leading_zeros(), 1);
	/// assert_eq!(bits![0, 0, 0, 0].leading_zeros(), 4);
	/// ```
	#[inline]
	pub fn leading_zeros(&self) -> usize {
		self.first_one().unwrap_or(self.len())
	}

	/// Counts the number of bits from the end of the bit-slice to the last bit
	/// set to `0`.
	///
	/// This returns `0` if the bit-slice is empty.
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::prelude::*;
	///
	/// assert_eq!(bits![].trailing_ones(), 0);
	/// assert_eq!(bits![0].trailing_ones(), 0);
	/// assert_eq!(bits![1, 0, 1, 1].trailing_ones(), 2);
	/// ```
	#[inline]
	pub fn trailing_ones(&self) -> usize {
		let len = self.len();
		self.last_zero().map(|idx| len - 1 - idx).unwrap_or(len)
	}

	/// Counts the number of bits from the end of the bit-slice to the last bit
	/// set to `1`.
	///
	/// This returns `0` if the bit-slice is empty.
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::prelude::*;
	///
	/// assert_eq!(bits![].trailing_zeros(), 0);
	/// assert_eq!(bits![1].trailing_zeros(), 0);
	/// assert_eq!(bits![0, 1, 0, 0].trailing_zeros(), 2);
	/// ```
	#[inline]
	pub fn trailing_zeros(&self) -> usize {
		let len = self.len();
		self.last_one().map(|idx| len - 1 - idx).unwrap_or(len)
	}

	/// Copies the bits from `src` into `self`.
	///
	/// The length of `src` must be the same as `self.
	///
	/// If `src` has the same type arguments as `self`, it can be more
	/// performant to use [`.copy_from_bitslice()`].
	///
	/// # Original
	///
	/// [`slice::clone_from_bitslice`](https://doc.rust-lang.org/stable/std/primitive.slice.html#method.clone_from_bitslice)
	///
	/// # API Differences
	///
	/// This method is renamed, as it takes a bit slice rather than an element
	/// slice.
	///
	/// # Panics
	///
	/// This function will panic if the two slices have different lengths.
	///
	/// # Examples
	///
	/// Cloning two bits from a slice into another:
	///
	/// ```rust
	/// use bitvec::prelude::*;
	///
	/// let src = bits![Msb0, u16; 1; 4];
	/// let dst = bits![mut Lsb0, u8; 0; 2];
	///
	/// dst.clone_from_bitslice(&src[2 ..]);
	/// assert_eq!(dst, bits![1; 2]);
	/// ```
	///
	/// Rust enforces that there can only be one mutable reference with no
	/// immutable references to a particular piece of data in a particular
	/// scope. Because of this, attempting to use clone_from_slice on a single
	/// slice will result in a compile failure:
	///
	/// ```rust,compile_fail
	/// use bitvec::prelude::*;
	///
	/// let slice = bits![mut 0, 0, 0, 1, 1];
	/// slice[.. 2].clone_from_bitslice(&slice[3 ..]); // compile fail!
	/// ```
	///
	/// To work around this, we can use [`.split_at_mut()`] to create two
	/// distinct sub-slices from a slice:
	///
	/// ```rust
	/// use bitvec::prelude::*;
	///
	/// let slice = bits![mut 0, 0, 0, 1, 1];
	///
	/// {
	///   let (left, right) = slice.split_at_mut(2);
	///   left.clone_from_bitslice(&right[1 ..]);
	/// }
	///
	/// assert_eq!(slice, bits![1, 1, 0, 1, 1]);
	/// ```
	///
	/// # Performance
	///
	/// If `self` and `src` use the same type arguments, this specializes to
	/// [`.copy_from_bitslice()`]; if you know statically that this is the case,
	/// prefer to call that method directly and avoid the cost of detection at
	/// runtime. Otherwise, this is a bit-by-bit crawl across both slices, which
	/// is a slow process.
	///
	/// [`.copy_from_bitslice()`]: Self::copy_from_bitslice
	/// [`.split_at_mut()`]: Self::split_at_mut
	pub fn clone_from_bitslice<O2, T2>(&mut self, src: &BitSlice<O2, T2>)
	where
		O2: BitOrder,
		T2: BitStore,
	{
		assert_eq!(
			self.len(),
			src.len(),
			"Cloning between slices requires equal lengths"
		);

		if dvl::match_types::<O, T, O2, T2>() {
			let that = src as *const _ as *const _;
			unsafe {
				self.copy_from_bitslice(&*that);
			}
		}
		else {
			for (to, from) in unsafe { self.iter_mut().remove_alias() }
				.zip(src.iter().by_val())
			{
				to.set(from);
			}
		}
	}

	/// Copies all bits from `src` into `self`, using a memcpy wherever
	/// possible.
	///
	/// The length of `src` must be same as `self`.
	///
	/// If `src` does not use the same type arguments as `self`, use
	/// [`.clone_from_bitslice()`].
	///
	/// # Original
	///
	/// [`slice::copy_from_slice`](https://doc.rust-lang.org/stable/std/primitive.slice.html#method.copy_from_slice)
	///
	/// # API Differences
	///
	/// This method is renamed, as it takes a bit slice rather than an element
	/// slice.
	///
	/// # Panics
	///
	/// This function will panic if the two slices have different lengths.
	///
	/// # Examples
	///
	/// Copying two bits from a slice into another:
	///
	/// ```rust
	/// use bitvec::prelude::*;
	///
	/// let src = bits![1; 4];
	/// let dst = bits![mut 0; 2];
	///
	/// // Because the slices have to be the same length,
	/// // we slice the source slice from four bits to
	/// // two. It will panic if we don't do this.
	/// dst.clone_from_bitslice(&src[2..]);
	/// ```
	///
	/// Rust enforces that there can only be one mutable reference with no
	/// immutable references to a particular piece of data in a particular
	/// scope. Because of this, attempting to use [.copy_from_slice()] on a
	/// single slice will result in a compile failure:
	///
	/// ```rust,compile_fail
	/// use bitvec::prelude::*;
	///
	/// let slice = bits![mut 0, 0, 0, 1, 1];
	///
	/// slice[.. 2].copy_from_bitslice(&bits[3 ..]); // compile fail!
	/// ```
	///
	/// To work around this, we can use [`.split_at_mut()`] to create two
	/// distinct sub-slices from a slice:
	///
	/// ```rust
	/// use bitvec::prelude::*;
	///
	/// let slice = bits![mut 0, 0, 0, 1, 1];
	///
	/// {
	///   let (left, right) = slice.split_at_mut(2);
	///   left.copy_from_bitslice(&right[1 ..]);
	/// }
	///
	/// assert_eq!(slice, bits![1, 1, 0, 1, 1]);
	/// ```
	///
	/// [`.clone_from_bitslice()`]: Self::clone_from_bitslice
	/// [`.split_at_mut()`]: Self::split_at_mut
	pub fn copy_from_bitslice(&mut self, src: &Self) {
		assert_eq!(
			self.len(),
			src.len(),
			"Copying between slices requires equal lengths"
		);

		let (d_head, s_head) =
			(self.as_bitspan().head(), src.as_bitspan().head());
		//  Where the two slices have identical layouts (head index and length),
		//  the copy can be done by using the memory domains.
		if d_head == s_head {
			match (self.domain_mut(), src.domain()) {
				(
					DomainMut::Enclave {
						elem: d_elem, tail, ..
					},
					Domain::Enclave { elem: s_elem, .. },
				) => {
					let mask = O::mask(d_head, tail);
					d_elem.clear_bits(mask);
					d_elem.set_bits(mask & s_elem.load_value());
				},
				(
					DomainMut::Region {
						head: d_head,
						body: d_body,
						tail: d_tail,
					},
					Domain::Region {
						head: s_head,
						body: s_body,
						tail: s_tail,
					},
				) => {
					if let (Some((h_idx, dh_elem)), Some((_, sh_elem))) =
						(d_head, s_head)
					{
						let mask = O::mask(h_idx, None);
						dh_elem.clear_bits(mask);
						dh_elem.set_bits(mask & sh_elem.load_value());
					}
					for (dst, src) in d_body.iter_mut().zip(s_body.iter()) {
						dst.store_value(src.load_value())
					}
					if let (Some((dt_elem, t_idx)), Some((st_elem, _))) =
						(d_tail, s_tail)
					{
						let mask = O::mask(None, t_idx);
						dt_elem.clear_bits(mask);
						dt_elem.set_bits(mask & st_elem.load_value());
					}
				},
				_ => unreachable!(
					"Slices with equal type parameters, lengths, and heads \
					 will always have equal domains"
				),
			}
		}
		/* TODO(myrrlyn): Remove this when specialization stabilizes.

		This section simulates access to specialization through partial
		type-argument application. It detects accelerable type arguments (`O`
		values provided by `bitvec`, where `BitSlice<O, _>` implements
		`BitField`) and uses their batch load/store behavior to move more than
		one bit per cycle.

		Without language-level specialization, we cannot dispatch to
		individually well-typed functions, so instead this block uses the
		compiler’s `TypeId` API to inspect the type arguments passed to a
		monomorphization and select the appropriate codegen for it. We know that
		control will only enter any of these subsequent blocks when the type
		argument to monomorphization matches the guard, so the pointer casts
		become the identity function, which is safe and correct.

		This is only safe to do in `.copy_from_bitslice()`, not in
		`.clone_from_bitslice()`, because `BitField`’s behavior will only be
		correct when the two slices are matching in both their ordering and
		storage type arguments. Mismatches will cause an observed shuffling of
		sections as `BitField` reïnterprets raw bytes according to the machine
		register selected.
		*/
		else if dvl::match_order::<O, Lsb0>() {
			let this: &mut BitSlice<Lsb0, T> =
				unsafe { &mut *(self as *mut _ as *mut _) };
			let that: &BitSlice<Lsb0, T> =
				unsafe { &*(src as *const _ as *const _) };
			this.sp_copy_from_bitslice(that);
		}
		else if dvl::match_order::<O, Msb0>() {
			let this: &mut BitSlice<Msb0, T> =
				unsafe { &mut *(self as *mut _ as *mut _) };
			let that: &BitSlice<Msb0, T> =
				unsafe { &*(src as *const _ as *const _) };
			this.sp_copy_from_bitslice(that);
		}
		else {
			for (ptr, from) in
				self.as_mut_bitptr_range().zip(src.iter().by_val())
			{
				unsafe {
					ptr.write(from);
				}
			}
		}
	}

	/// Swaps all bits in `self` with those in `other`.
	///
	/// The length of `other` must be the same as `self`.
	///
	/// # Original
	///
	/// [`slice::swap_with_slice`](https://doc.rust-lang.org/stable/std/primitive.slice.html#method.swap_with_slice)
	///
	/// # API Differences
	///
	/// This method is renamed, as it takes a bit slice rather than an element
	/// slice.
	///
	/// # Panics
	///
	/// This function will panic if the two slices have different lengths.
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::prelude::*;
	///
	/// let mut one = [0xA5u8, 0x69];
	/// let mut two = 0x1234u16;
	/// let one_bits = one.view_bits_mut::<Msb0>();
	/// let two_bits = two.view_bits_mut::<Lsb0>();
	///
	/// one_bits.swap_with_bitslice(two_bits);
	///
	/// assert_eq!(one, [0x2C, 0x48]);
	/// # #[cfg(target_endian = "little")] {
	/// assert_eq!(two, 0x96A5);
	/// # }
	/// ```
	pub fn swap_with_bitslice<O2, T2>(&mut self, other: &mut BitSlice<O2, T2>)
	where
		O2: BitOrder,
		T2: BitStore,
	{
		let len = self.len();
		assert_eq!(len, other.len());
		for (to, from) in unsafe {
			self.iter_mut()
				.remove_alias()
				.zip(other.iter_mut().remove_alias())
		} {
			let (this, that) = (*to, *from);
			to.set(that);
			from.set(this);
		}
	}

	/// Shifts the contents of a bit-slice left (towards index `0`).
	///
	/// This moves the contents of the slice from `by ..` down to
	/// `0 .. len - by`, and erases `len - by ..` to `0`. As this is a
	/// destructive (and linearly expensive) operation, you may prefer instead
	/// to use range subslicing.
	///
	/// # Parameters
	///
	/// - `&mut self`
	/// - `by`: The distance by which to shift the slice contents.
	///
	/// # Panics
	///
	/// This panics if `by` is not less than `self.len()`.
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::prelude::*;
	///
	/// let bits = bits![mut 1; 6];
	/// bits.shift_left(2);
	/// assert_eq!(bits, bits![1, 1, 1, 1, 0, 0]);
	/// ```
	pub fn shift_left(&mut self, by: usize) {
		let len = self.len();
		if by == 0 {
			return;
		}
		assert!(
			by < len,
			"Cannot shift a slice by more than its length: {} exceeds {}",
			by,
			len
		);

		unsafe {
			self.copy_within_unchecked(by .., 0);
			let trunc = len - by;
			self.get_unchecked_mut(trunc ..).set_all(false);
		}
	}

	/// Shifts the contents of a bit-slice right (towards index `self.len()`).
	///
	/// This moves the contents of the slice from `.. len - by` up to `by ..`,
	/// and erases `.. by` to `0`. As this is a destructive (and linearly
	/// expensive) operation, you may prefer instead to use range subslicing.
	///
	/// # Parameters
	///
	/// - `&mut self`
	/// - `by`: The distance by which to shift the slice contents.
	///
	/// # Panics
	///
	/// This panics if `by` is not less than `self.len()`.
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::prelude::*;
	///
	/// let bits = bits![mut 1; 6];
	/// bits.shift_right(2);
	/// assert_eq!(bits, bits![0, 0, 1, 1, 1, 1]);
	/// ```
	pub fn shift_right(&mut self, by: usize) {
		let len = self.len();
		if by == 0 {
			return;
		}
		assert!(
			by < len,
			"Cannot shift a slice by more than its length: {} exceeds {}",
			by,
			len
		);

		let trunc = len - by;
		unsafe {
			self.copy_within_unchecked(.. trunc, by);
			self.get_unchecked_mut(.. by).set_all(false);
		}
	}

	/// Sets all bits in the slice to a value.
	///
	/// # Parameters
	///
	/// - `&mut self`
	/// - `value`: The bit value to which all bits in the slice will be set.
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::prelude::*;
	///
	/// let mut src = 0u8;
	/// let bits = src.view_bits_mut::<Msb0>();
	/// bits[2 .. 6].set_all(true);
	/// assert_eq!(bits.as_slice(), &[0b0011_1100]);
	/// bits[3 .. 5].set_all(false);
	/// assert_eq!(bits.as_slice(), &[0b0010_0100]);
	/// bits[.. 1].set_all(true);
	/// assert_eq!(bits.as_slice(), &[0b1010_0100]);
	/// ```
	pub fn set_all(&mut self, value: bool) {
		//  Grab the function pointers used to commit bit-masks into memory.
		let setter = <T::Access>::get_writers(value);
		match self.domain_mut() {
			DomainMut::Enclave { head, elem, tail } => {
				setter(elem, O::mask(head, tail));
			},
			DomainMut::Region { head, body, tail } => {
				if let Some((head, elem)) = head {
					setter(elem, O::mask(head, None));
				}
				//  loop assignment is `memset`’s problem, not ours
				unsafe {
					ptr::write_bytes(
						body.as_mut_ptr(),
						[0, !0][value as usize],
						body.len(),
					);
				}
				if let Some((elem, tail)) = tail {
					setter(elem, O::mask(None, tail));
				}
			},
		}
	}

	/// Applies a function to each bit in the slice.
	///
	/// `BitSlice` cannot implement [`IndexMut`], as it cannot manifest `&mut
	/// bool` references, and the [`BitRef`] proxy reference has an unavoidable
	/// overhead. This method bypasses both problems, by applying a function to
	/// each pair of index and value in the slice, without constructing a proxy
	/// reference. Benchmarks indicate that this method is about 2–4 times
	/// faster than the `.iter_mut().enumerate()` equivalent.
	///
	/// # Parameters
	///
	/// - `&mut self`
	/// - `func`: A function which receives two arguments, `index: usize` and
	///   `value: bool`, and returns a `bool`.
	///
	/// # Effects
	///
	/// For each index in the slice, the result of invoking `func` with the
	/// index number and current bit value is written into the slice.
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::prelude::*;
	///
	/// let mut data = 0u8;
	/// let bits = data.view_bits_mut::<Msb0>();
	/// bits.for_each(|idx, _bit| idx % 3 == 0);
	/// assert_eq!(data, 0b100_100_10);
	/// ```
	///
	/// [`BitRef`]: crate::ptr::BitRef
	/// [`IndexMut`]: core::ops::IndexMut
	pub fn for_each<F>(&mut self, mut func: F)
	where F: FnMut(usize, bool) -> bool {
		for idx in 0 .. self.len() {
			unsafe {
				let tmp = *self.get_unchecked(idx);
				let new = func(idx, tmp);
				self.set_unchecked(idx, new);
			}
		}
	}

	/// Produces the absolute offset in bits between two slice heads.
	///
	/// While this method is sound for any two arbitrary bit slices, the answer
	/// it produces is meaningful *only* when one argument is a strict subslice
	/// of the other. If the two slices are created from different buffers
	/// entirely, a comparison is undefined; if the two slices are disjoint
	/// regions of the same buffer, then the semantically correct distance is
	/// between the tail of the lower and the head of the upper, which this
	/// does not measure.
	///
	/// # Visual Description
	///
	/// Consider the following sequence of bits:
	///
	/// ```text
	/// [ 0 1 2 3 4 5 6 7 8 9 a b ]
	///   |       ^^^^^^^       |
	///   ^^^^^^^^^^^^^^^^^^^^^^^
	/// ```
	///
	/// It does not matter whether there are bits between the tail of the
	/// smaller and the larger slices. The offset is computed from the bit
	/// distance between the two heads.
	///
	/// # Behavior
	///
	/// This function computes the *semantic* distance between the heads, rather
	/// than the *electrical. It does not take into account the `BitOrder`
	/// implementation of the slice.
	///
	/// # Safety and Soundness
	///
	/// One of `self` or `other` must contain the other for this comparison to
	/// be meaningful.
	///
	/// # Parameters
	///
	/// - `&self`
	/// - `other`: Another bit slice. This must be either a strict subregion or
	///   a strict superregion of `self`.
	///
	/// # Returns
	///
	/// The distance in (semantic) bits betwen the heads of each region. The
	/// value is positive when `other` is higher in the address space than
	/// `self`, and negative when `other` is lower in the address space than
	/// `self`.
	pub fn offset_from(&self, other: &Self) -> isize {
		unsafe { other.as_bitptr().offset_from(self.as_bitptr()) }
	}

	#[doc(hidden)]
	#[deprecated = "Use `BitPtr::offset_from`"]
	pub fn electrical_distance(&self, _other: &Self) -> isize {
		unimplemented!(
			"This no longer exists! Offsets are only defined between two \
			 bit-pointers in the same bit-region, and `bitvec` considers two \
			 regions with different orderings, *even if they cover the same \
			 locations*, to be different. Use `BitPtr::offset_from`."
		);
	}
}

/// Unchecked variants of checked accessors.
impl<O, T> BitSlice<O, T>
where
	O: BitOrder,
	T: BitStore,
{
	/// Writes a new bit at a given index, without doing bounds checking.
	///
	/// This is generally not recommended; use with caution! Calling this method
	/// with an out-of-bounds index is *[undefined behavior]*. For a safe
	/// alternative, see [`.set()`].
	///
	/// # Parameters
	///
	/// - `&mut self`
	/// - `index`: The bit index at which to write. It must be in the range `0
	///   .. self.len()`.
	/// - `value`: The value to be written; `true` for `1` or `false` for `0`.
	///
	/// # Effects
	///
	/// The bit at `index` is set to `value`. If `index` is out of bounds, then
	/// the memory access is incorrect, and its behavior is unspecified.
	///
	/// # Safety
	///
	/// This method is **not** safe. It performs raw pointer arithmetic to seek
	/// from the start of the slice to the requested index, and set the bit
	/// there. It does not inspect the length of `self`, and it is free to
	/// perform out-of-bounds memory *write* access.
	///
	/// Use this method **only** when you have already performed the bounds
	/// check, and can guarantee that the call occurs with a safely in-bounds
	/// index.
	///
	/// # Examples
	///
	/// This example uses a bit slice of length 2, and demonstrates
	/// out-of-bounds access to the last bit in the element.
	///
	/// ```rust
	/// use bitvec::prelude::*;
	///
	/// let bits = bits![mut 0; 2];
	/// let (first, _) = bits.split_at_mut(1);
	///
	/// unsafe {
	///   first.set_unchecked(1, true);
	/// }
	///
	/// assert_eq!(bits, bits![0, 1]);
	/// ```
	///
	/// [`self.len()`]: Self::len
	/// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
	/// [`.set()`]: Self::set
	pub unsafe fn set_unchecked(&mut self, index: usize, value: bool) {
		self.as_mut_bitptr().add(index).write(value);
	}

	/// Writes a new bit at a given index, without doing bounds checking.
	///
	/// This method supports writing through a shared reference to a bit that
	/// may be observed by other `BitSlice` handles. It is only present when the
	/// `T` type parameter supports such shared mutation (measured by the
	/// [`Radium`] trait).
	///
	/// # Effects
	///
	/// The bit at `index` is set to `value`. If `index` is out of bounds, then
	/// the memory access is incorrect, and its behavior is unspecified. If `T`
	/// is an [atomic], this will lock the memory bus for the referent
	/// address, and may cause stalls.
	///
	/// # Safety
	///
	/// This method is **not** safe. It performs raw pointer arithmetic to seek
	/// from the start of the slice to the requested index, and set the bit
	/// there. It does not inspect the length of `self`, and it is free to
	/// perform out-of-bounds memory *write* access.
	///
	/// Use this method **only** when you have already performed the bounds
	/// check, and can guarantee that the call occurs with a safely in-bounds
	/// index.
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::prelude::*;
	/// use core::cell::Cell;
	///
	/// let byte = Cell::new(0u8);
	/// let bits = byte.view_bits::<Msb0>();
	/// let bits_2 = bits;
	///
	/// let (first, _) = bits.split_at(1);
	/// assert_eq!(first.len(), 1);
	/// unsafe { first.set_aliased_unchecked(2, true); }
	///
	/// assert!(bits_2[2]);
	/// ```
	///
	/// [atomic]: core::sync::atomic
	/// [`Radium`]: radium::Radium
	pub unsafe fn set_aliased_unchecked(&self, index: usize, value: bool)
	where T: radium::Radium {
		self.as_bitptr().add(index).assert_mut().write(value);
	}

	/// Swaps two bits in the slice.
	///
	/// See [`.swap()`].
	///
	/// # Safety
	///
	/// `a` and `b` must both be less than [`self.len()`].
	///
	/// [`self.len()`]: Self::len
	/// [`.swap()`]: Self::swap
	pub unsafe fn swap_unchecked(&mut self, a: usize, b: usize) {
		let bit_a = *self.get_unchecked(a);
		let bit_b = *self.get_unchecked(b);
		self.set_unchecked(a, bit_b);
		self.set_unchecked(b, bit_a);
	}

	/// Divides one slice into two at an index, without performing any bounds
	/// checking.
	///
	/// See [`.split_at()`].
	///
	/// # Safety
	///
	/// `mid` must not be greater than [`self.len()`]. If this condition is
	/// violated, the function behavior is *unspecified*.
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::prelude::*;
	///
	/// let bits = bits![0, 0, 0, 1, 1, 1];
	/// let (l, r) = unsafe { bits.split_at_unchecked(3) };
	/// assert!(l.not_any());
	/// assert!(r.all());
	///
	/// let (l, r) = unsafe { bits.split_at_unchecked(6) };
	/// assert_eq!(l, bits);
	/// assert!(r.is_empty());
	/// ```
	///
	/// [`self.len()`]: Self::len
	/// [`.split_at()`]: Self::split_at
	pub unsafe fn split_at_unchecked(&self, mid: usize) -> (&Self, &Self) {
		(self.get_unchecked(.. mid), self.get_unchecked(mid ..))
	}

	/// Divides one mutable slice into two at an index.
	///
	/// See [`.split_at_mut()`].
	///
	/// # Safety
	///
	/// `mid` must not be greater than [`self.len()`].
	///
	/// [`self.len()`]: Self::len
	/// [`.split_at_mut()`]: Self::split_at_mut
	#[allow(clippy::type_complexity)]
	pub unsafe fn split_at_unchecked_mut(
		&mut self,
		mid: usize,
	) -> (&mut BitSlice<O, T::Alias>, &mut BitSlice<O, T::Alias>) {
		let bp = self.alias_mut().as_mut_bitspan();
		(
			bp.to_bitslice_mut().get_unchecked_mut(.. mid),
			bp.to_bitslice_mut().get_unchecked_mut(mid ..),
		)
	}

	/// Copies bits from one part of the slice to another part of itself,
	/// without doing bounds checks.
	///
	/// The ranges are allowed to overlap.
	///
	/// # Parameters
	///
	/// - `&mut self`
	/// - `src`: The range within `self` from which to copy.
	/// - `dst`: The starting index within `self` at which to paste.
	///
	/// # Effects
	///
	/// `self[src]` is copied to `self[dest .. dest + src.end() - src.start()]`.
	///
	/// # Safety
	///
	/// `src` and `dest .. dest + src.len()` must be entirely within
	/// [`self.len()`].
	///
	/// [`self.len()`]: Self::len
	pub unsafe fn copy_within_unchecked<R>(&mut self, src: R, dest: usize)
	where R: RangeBounds<usize> {
		if dvl::match_order::<O, Lsb0>() {
			let this: &mut BitSlice<Lsb0, T> = &mut *(self as *mut _ as *mut _);
			this.sp_copy_within_unchecked(src, dest);
		}
		else if dvl::match_order::<O, Msb0>() {
			let this: &mut BitSlice<Msb0, T> = &mut *(self as *mut _ as *mut _);
			this.sp_copy_within_unchecked(src, dest);
		}
		else {
			let source = dvl::normalize_range(src, self.len());
			let source_len = source.len();
			let rev = source.contains(&dest);
			let iter = source.zip(dest .. dest + source_len);
			if rev {
				for (from, to) in iter.rev() {
					let bit = *self.get_unchecked(from);
					self.set_unchecked(to, bit);
				}
			}
			else {
				for (from, to) in iter {
					let bit = *self.get_unchecked(from);
					self.set_unchecked(to, bit);
				}
			}
		}
	}
}

/// View conversions.
#[cfg(not(tarpaulin_include))]
impl<O, T> BitSlice<O, T>
where
	O: BitOrder,
	T: BitStore,
{
	/// Returns a raw bit-pointer to the base of the bit-slice’s region.
	///
	/// The caller must ensure that the bit-slice outlives the bit-pointer this
	/// function returns, or else it will end up pointing to garbage.
	///
	/// The caller must also ensure that the memory the bit-pointer
	/// (non-transitively) points to is never written to using this bit-pointer
	/// or any bit-pointer derived from it. If you need to mutate the contents
	/// of the slice, use [`.as_mut_bitptr()`].
	///
	/// Modifying the container referenced by this bit-slice may cause its
	/// buffer to be reällocated, which would also make any bit-pointers to it
	/// invalid.
	///
	/// # Original
	///
	/// [`slice::as_ptr`](https://doc.rust-lang.org/stable/std/primitive.slice.html#method.as_ptr)
	///
	/// # API Differences
	///
	/// This returns a structure, [`BitPtr`], rather than an actual raw pointer
	/// `*Bit`. The information required to address a bit within a memory
	/// element cannot be encoded into a single pointer.
	///
	/// This structure can be converted back into a `&BitSlice` with the
	/// function [`from_raw_parts`].
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::prelude::*;
	///
	/// let x = bits![0, 0, 1];
	/// let x_ptr = x.as_ptr();
	///
	/// unsafe {
	///   for i in 0 .. x.len() {
	///     assert_eq!(*x.get_unchecked(i), (&*x)[i]);
	///   }
	/// }
	/// ```
	///
	/// [`.as_mut_bitptr()`]: Self::as_mut_bitptr
	/// [`from_raw_parts`]: crate::slice::from_raw_parts
	#[inline(always)]
	pub fn as_bitptr(&self) -> BitPtr<Const, O, T> {
		self.as_bitspan().as_bitptr()
	}

	/// Returns an unsafe mutable bit-pointer to the bit-slice’s region.
	///
	/// The caller must ensure that the bit-slice outlives the bit-pointer this
	/// function returns, or else it will end up pointing to garbage.
	///
	/// Modifying the container referenced by this bit-slice may cause its
	/// buffer to be reällocated, which would also make any bit-pointers to it
	/// invalid.
	///
	/// # Original
	///
	/// [`slice::as_mut_ptr`](https://doc.rust-lang.org/stable/std/primitive.slice.html#method.as_mut_ptr)
	///
	/// # API Differences
	///
	/// This returns `*mut BitSlice`, which is the equivalont of `*mut [T]`
	/// instead of `*mut T`. The pointer encoding used requires more than one
	/// CPU word of space to address a single bit, so there is no advantage to
	/// removing the length information from the encoded pointer value.
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::prelude::*;
	///
	/// let bits = bits![mut Lsb0, u8; 0; 8];
	/// let bits_ptr = bits.as_mut_ptr();
	///
	/// for i in 0 .. bits.len() {
	///   unsafe {
	///     bits_ptr.add(i).write(i % 3 == 0);
	///   }
	/// }
	/// assert_eq!(bits.as_slice()[0], 0b0100_1001);
	/// ```
	#[inline(always)]
	pub fn as_mut_bitptr(&mut self) -> BitPtr<Mut, O, T> {
		self.as_mut_bitspan().as_bitptr()
	}

	/// Returns the two raw bit-pointers spanning the bit-slice.
	///
	/// The returned range is half-open, which means that the end bit-pointer
	/// points *one past* the last bit of the bit-slice. This way, an empty
	/// bit-slice is represented by two equal bit-pointers, and the difference
	/// between the two bit-pointers represents the size of the bit-slice.
	///
	/// See [`as_bitptr`] for warnings on using these bit-pointers. The end
	/// bit-pointer requires extra caution, as it does not point to a valid bit
	/// in the bit-slice.
	///
	/// This function allows a more direct access to bit-pointers, without
	/// paying the cost of encoding into a `*BitSlice`, at the cost of no longer
	/// fitting into ordinary Rust interfaces.
	///
	/// # Original
	///
	/// [`slice::as_ptr_range`](https://doc.rust-lang.org/stable/std/primitive.slice.html#method.as_ptr_range)
	///
	/// # API Differences
	///
	/// This returns a dedicated structure, rather than a range of [`BitPtr`]s,
	/// because the traits needed for non-`core` types to correctly operate in
	/// ranges are still unstable. The structure can be converted into a range,
	/// but that range will not be an iterator.
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::prelude::*;
	///
	/// let bits = bits![0, 1, 0, 0, 1];
	/// let mid_ptr = bits.get(2).unwrap().into_bitptr();
	/// let mut range = bits.as_bitptr_range();
	/// assert!(range.contains(&mid_ptr));
	/// unsafe {
	///   assert!(!range.next().unwrap().read());
	///   assert!(range.next_back().unwrap().read())
	/// }
	/// ```
	///
	/// [`BitPtr`]: crate::ptr::BitPtr
	/// [`as_bitptr`]: Self::as_bitptr
	pub fn as_bitptr_range(&self) -> BitPtrRange<Const, O, T> {
		unsafe { self.as_bitptr().range(self.len()) }
	}

	/// Returns the two unsafe mutable bit-pointers spanning the bit-slice.
	///
	/// The returned range is half-open, which means that the end bit-pointer
	/// points *one past* the last bitt of the bit-slice. This way, an empty
	/// bit-slice is represented by two equal bit-pointers, and the difference
	/// between the two bit-pointers represents the size of the bit-slice.
	///
	/// See [`as_mut_bitptr`] for warnings on using these bit-pointers. The end
	/// bit-pointer requires extra caution, as it does not point to a valid bit
	/// in the bit-slice.
	///
	/// # Original
	///
	/// [`slice::as_mut_ptr_range`](https://doc.rust-lang.org/stable/std/primitive.slice.html#method.as_mut_ptr_range)
	///
	/// # API Differences
	///
	/// This returns a dedicated structure, rather than a range of [`BitPtr`]s,
	/// because the traits needed for non-`core` types to correctly operate in
	/// ranges are still unstable. The structure can be converted into a range,
	/// but that range will not be an iterator.
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::prelude::*;
	/// use bitvec::ptr as bv_ptr;
	///
	/// let mut data = 0u8;
	/// let bits = data.view_bits_mut::<Msb0>();
	/// for mut bitptr in bits.as_mut_bitptr_range() {
	///   unsafe { bv_ptr::write(bitptr, true); }
	/// }
	/// assert_eq!(data, !0);
	/// ```
	///
	/// [`BitPtr`]: crate::ptr::BitPtr
	/// [`as_mut_bitptr`]: Self::as_mut_bitptr
	pub fn as_mut_bitptr_range(&mut self) -> BitPtrRange<Mut, O, T> {
		unsafe { self.as_mut_bitptr().range(self.len()) }
	}

	/// Splits the slice into subslices at alias boundaries.
	///
	/// This splits `self` into the memory locations that it partially fills and
	/// the memory locations that it completely fills. The locations that are
	/// completely filled may be accessed without any `bitvec`-imposed alias
	/// conditions, while the locations that are only partially filled are left
	/// unchanged.
	///
	/// You can read more about the [`BitDomain`] splitting in its
	/// documentation.
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::prelude::*;
	///
	/// let mut data = [0u16; 3];
	/// let all = data.view_bits_mut::<Msb0>();
	/// let (_, rest) = all.split_at_mut(8);
	/// let bits: &BitSlice<Msb0, <u16 as BitStore>::Alias> = &rest[.. 32];
	///
	/// let (head, body, tail) = bits
	///   .bit_domain()
	///   .region()
	///   .unwrap();
	/// assert_eq!(head.len(), 8);
	/// assert_eq!(tail.len(), 8);
	/// let _: &BitSlice<Msb0, <u16 as BitStore>::Alias> = head;
	/// let _: &BitSlice<Msb0, <u16 as BitStore>::Alias> = tail;
	/// let _: &BitSlice<Msb0, u16> = body;
	/// ```
	///
	/// [`BitDomain`]: crate::domain::BitDomain
	#[inline(always)]
	#[cfg(not(tarpaulin_include))]
	pub fn bit_domain(&self) -> BitDomain<O, T> {
		BitDomain::new(self)
	}

	/// Splits the slice into subslices at alias boundaries.
	///
	/// This splits `self` into the memory locations that it partially fills and
	/// the memory locations that it completely fills. The locations that are
	/// completely filled may be accessed without any `bitvec`-imposed alias
	/// conditions, while the locations that are only partially filled are left
	/// unchanged.
	///
	/// You can read more about the [`BitDomainMut`] splitting in its
	/// documentation.
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::prelude::*;
	///
	/// let mut data = [0u16; 3];
	/// let all = data.view_bits_mut::<Msb0>();
	/// let (_, rest) = all.split_at_mut(8);
	/// let bits: &mut BitSlice<Msb0, <u16 as BitStore>::Alias>
	///   = &mut rest[.. 32];
	///
	/// let (head, body, tail) = bits
	///   .bit_domain_mut()
	///   .region()
	///   .unwrap();
	/// assert_eq!(head.len(), 8);
	/// assert_eq!(tail.len(), 8);
	/// let _: &mut BitSlice<Msb0, <u16 as BitStore>::Alias> = head;
	/// let _: &mut BitSlice<Msb0, <u16 as BitStore>::Alias> = tail;
	/// let _: &mut BitSlice<Msb0, u16> = body;
	/// ```
	///
	/// [`BitDomainMut`]: crate::domain::BitDomainMut
	#[inline(always)]
	#[cfg(not(tarpaulin_include))]
	pub fn bit_domain_mut(&mut self) -> BitDomainMut<O, T> {
		BitDomainMut::new(self)
	}

	/// Views the underlying memory containing the slice, split at alias
	/// boundaries.
	///
	/// This splits `self` into the memory locations that it partially fills and
	/// the memory locatinos that it completely fills. The locations that are
	/// completely filled may be accessed without any `bitvec`-imposed alias
	/// conditions, while the locations that are only partially filled are left
	/// unchanged.
	///
	/// You can read more about the [`Domain`] splitting in its documentation.
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::prelude::*;
	///
	/// let mut data = [0u16; 3];
	/// let all = data.view_bits_mut::<Msb0>();
	/// let (_, rest) = all.split_at_mut(8);
	/// let bits: &BitSlice<Msb0, <u16 as BitStore>::Alias> = &rest[.. 32];
	///
	/// let (head, body, tail) = bits
	///   .domain()
	///   .region()
	///   .unwrap();
	/// assert_eq!(body.len(), 1);
	///
	/// let _: &<u16 as BitStore>::Alias = head.unwrap().1;
	/// let _: &<u16 as BitStore>::Alias = tail.unwrap().0;
	/// let _: &[u16] = body;
	/// ```
	///
	/// [`Domain`]: crate::domain::Domain
	#[inline(always)]
	#[cfg(not(tarpaulin_include))]
	pub fn domain(&self) -> Domain<T> {
		Domain::new(self)
	}

	/// Views the underlying memory containing the slice, split at alias
	/// boundaries.
	///
	/// This splits `self` into the memory locations that it partially fills and
	/// the memory locations that it completely fills. The locations that are
	/// completely filled may be accessed without any `bitvec`-imposed alias
	/// conditions, while the locations that are only partially filled are left
	/// unchanged.
	///
	/// You can read more about the [`DomainMut`] splitting in its
	/// documentation.
	///
	/// # Examples
	///
	///
	/// ```rust
	/// use bitvec::prelude::*;
	///
	/// let mut data = [0u16; 3];
	/// let all = data.view_bits_mut::<Msb0>();
	/// let (_, rest) = all.split_at_mut(8);
	/// let bits: &mut BitSlice<Msb0, <u16 as BitStore>::Alias> = &mut rest[.. 32];
	///
	/// let (head, body, tail) = bits
	///   .domain_mut()
	///   .region()
	///   .unwrap();
	/// assert_eq!(body.len(), 1);
	///
	/// let _: &<<u16 as BitStore>::Alias as BitStore>::Access = head.unwrap().1;
	/// let _: &<<u16 as BitStore>::Alias as BitStore>::Access = tail.unwrap().0;
	/// let _: &mut [u16] = body;
	/// ```
	///
	/// [`DomainMut`]: crate::domain::DomainMut
	#[inline(always)]
	#[cfg(not(tarpaulin_include))]
	pub fn domain_mut(&mut self) -> DomainMut<T> {
		DomainMut::new(self)
	}

	/// Views the underlying memory containing the slice.
	///
	/// The returned slice handle views all elements touched by `self`, and
	/// marks them all with `self`’s current aliasing state. For a more precise
	/// view, or one that permits mutation, use [`.domain()`] or
	/// [`.domain_mut()`].
	///
	/// [`.domain()`]: Self::domain
	/// [`.domain_mut()`]: Self::domain_mut
	pub fn as_slice(&self) -> &[T] {
		let bitspan = self.as_bitspan();
		let (base, elts) = (bitspan.address().to_const(), bitspan.elements());
		unsafe { slice::from_raw_parts(base, elts) }
	}
}

/// Crate-internal functions.
impl<O, T> BitSlice<O, T>
where
	O: BitOrder,
	T: BitStore,
{
	/// Type-cast the slice reference to its pointer structure.
	pub(crate) fn as_bitspan(&self) -> BitSpan<Const, O, T> {
		BitSpan::from_bitslice_ptr(self)
	}

	/// Type-cast the slice reference to its pointer structure.
	pub(crate) fn as_mut_bitspan(&mut self) -> BitSpan<Mut, O, T> {
		BitSpan::from_bitslice_ptr_mut(self)
	}

	/// Asserts that `index` is less than [`self.len()`].
	///
	/// # Parameters
	///
	/// - `&self`
	/// - `index`: The index to test against [`self.len()`].
	///
	/// # Panics
	///
	/// This method panics if `index` is not less than `self.len()`.
	///
	/// [`self.len()`]: Self::len
	pub(crate) fn assert_in_bounds(&self, index: usize) {
		let len = self.len();
		assert!(index < len, "Index out of range: {} >= {}", index, len);
	}

	/// Marks an immutable slice as referring to aliased memory region.
	pub(crate) fn alias(&self) -> &BitSlice<O, T::Alias> {
		unsafe { &*(self as *const Self as *const BitSlice<O, T::Alias>) }
	}

	/// Marks a mutable slice as describing an aliased memory region.
	pub(crate) fn alias_mut(&mut self) -> &mut BitSlice<O, T::Alias> {
		unsafe { &mut *(self as *mut Self as *mut BitSlice<O, T::Alias>) }
	}

	/// Removes the aliasing marker from a mutable slice handle.
	///
	/// # Safety
	///
	/// This must only be used when the slice is either known to be unaliased,
	/// or this call is combined with an operation that adds an aliasing marker
	/// and the total number of aliasing markers must remain unchanged.
	#[cfg(not(tarpaulin_include))]
	pub(crate) unsafe fn unalias_mut(
		this: &mut BitSlice<O, T::Alias>,
	) -> &mut Self {
		&mut *(this as *mut BitSlice<O, T::Alias> as *mut Self)
	}

	/// Splits a mutable slice at some mid-point, without checking boundary
	/// conditions or adding an alias marker.
	///
	/// This method has the same behavior as [`.split_at_unchecked_mut()`],
	/// except that it does not apply an aliasing marker to the partitioned
	/// subslices.
	///
	/// # Safety
	///
	/// See [`.split_at_unchecked_mut()`] for safety requirements.
	///
	/// Additionally, this is only safe when `T` is alias-safe.
	///
	/// [`.split_at_unchecked_mut()`]: Self::split_at_unchecked_mut
	pub(crate) unsafe fn split_at_unchecked_mut_noalias(
		&mut self,
		mid: usize,
	) -> (&mut Self, &mut Self) {
		//  Split the slice at the requested midpoint, adding an alias layer
		let (head, tail) = self.split_at_unchecked_mut(mid);
		//  Remove the new alias layer.
		(Self::unalias_mut(head), Self::unalias_mut(tail))
	}
}

/// Methods available only when `T` allows shared mutability.
impl<O, T> BitSlice<O, T>
where
	O: BitOrder,
	T: BitSafe + BitStore,
{
	/// Splits a mutable slice at some mid-point.
	///
	/// This method has the same behavior as [`.split_at_mut()`], except that it
	/// does not apply an aliasing marker to the partitioned subslices.
	///
	/// # Safety
	///
	/// Because this method is defined only on `BitSlice`s whose `T` type is
	/// alias-safe, the subslices do not need to be additionally marked.
	///
	/// [`.split_at_mut()`]: Self::split_at_mut
	pub fn split_at_aliased_mut(
		&mut self,
		mid: usize,
	) -> (&mut Self, &mut Self) {
		let (head, tail) = self.split_at_mut(mid);
		unsafe { (Self::unalias_mut(head), Self::unalias_mut(tail)) }
	}
}

/// Miscellaneous information.
impl<O, T> BitSlice<O, T>
where
	O: BitOrder,
	T: BitStore,
{
	/// The inclusive maximum length of a `BitSlice<_, T>`.
	///
	/// As `BitSlice` is zero-indexed, the largest possible index is one less
	/// than this value.
	///
	/// |CPU word width|         Value         |
	/// |-------------:|----------------------:|
	/// |32 bits       |     `0x1fff_ffff`     |
	/// |64 bits       |`0x1fff_ffff_ffff_ffff`|
	pub const MAX_BITS: usize = BitSpan::<Const, O, T>::REGION_MAX_BITS;
	/// The inclusive maximum length that a slice `[T]` can be for
	/// `BitSlice<_, T>` to cover it.
	///
	/// A `BitSlice<_, T>` that begins in the interior of an element and
	/// contains the maximum number of bits will extend one element past the
	/// cutoff that would occur if the slice began at the zeroth bit. Such a
	/// slice must be manually constructed, but will not otherwise fail.
	///
	/// |Type Bits|Max Elements (32-bit)| Max Elements (64-bit) |
	/// |--------:|--------------------:|----------------------:|
	/// |        8|    `0x0400_0001`    |`0x0400_0000_0000_0001`|
	/// |       16|    `0x0200_0001`    |`0x0200_0000_0000_0001`|
	/// |       32|    `0x0100_0001`    |`0x0100_0000_0000_0001`|
	/// |       64|    `0x0080_0001`    |`0x0080_0000_0000_0001`|
	pub const MAX_ELTS: usize = BitSpan::<Const, O, T>::REGION_MAX_ELTS;
}

#[cfg(feature = "alloc")]
impl<O, T> BitSlice<O, T>
where
	O: BitOrder,
	T: BitStore,
{
	/// Copies `self` into a new [`BitVec`].
	///
	/// This resets any alias markings from `self`, since the returned buffer is
	/// known to be newly allocated and thus unaliased.
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::prelude::*;
	///
	/// let bits = bits![0, 1, 0, 1];
	/// let bv = bits.to_bitvec();
	/// assert_eq!(bits, bv);
	/// ```
	///
	/// [`BitVec`]: crate::vec::BitVec
	pub fn to_bitvec(&self) -> BitVec<O, T::Unalias> {
		let mut bitspan = self.as_bitspan();
		//  Create an allocation and copy `*self` into it.
		let mut vec = self.domain().collect::<Vec<_>>().pipe(ManuallyDrop::new);
		let capacity = vec.capacity();
		unsafe {
			bitspan
				.set_address(Address::new_unchecked(vec.as_mut_ptr() as usize));
			BitVec::from_fields(
				bitspan.assert_mut().cast::<T::Unalias>(),
				capacity,
			)
		}
	}
}

/** Performs the same functionality as [`from_raw_parts`], without checking the
`len` argument.

# Parameters

- `data`: A `BitPtr` to a dereferencable region of memory.
- `len`: The length, in bits, of the region beginning at `*data`. This is not
  checked against the maximum value, and is encoded directly into the bit-slice
  reference. If it exceeds [`BitSlice::MAX_BITS`], it will be modulated to fit
  (the high bits will be discarded).

# Returns

A `&BitSlice` reference starting at `data` and running for `len & MAX_BITS`
bits.

# Safety

See [`from_raw_parts`].

[`BitSlice::MAX_BITS`]: crate::slice::BitSlice::MAX_BITS
[`from_raw_parts`]: crate::slice::from_raw_parts
**/
pub unsafe fn from_raw_parts_unchecked<'a, O, T>(
	data: BitPtr<Const, O, T>,
	len: usize,
) -> &'a BitSlice<O, T>
where
	O: BitOrder,
	T: BitStore,
{
	data.span_unchecked(len).to_bitslice_ref()
}

/** Performs the same functionality as [`from_raw_parts_mut`], without checking
the `len` argument.

# Parameters

- `data`: A `BitPtr` to a dereferencable region of memory.
- `len`: The length, in bits, of the region beginning at `*data`. This is not
  checked against the maximum value, and is encoded directly into the bit-slice
  reference. If it exceeds [`BitSlice::MAX_BITS`], it will be modulated to fit
  (the high bits will be discarded).

# Returns

A `&mut BitSlice` reference starting at `data` and running for `len & MAX_BITS`
bits.

# Safety

See [`from_raw_parts_mut`].

[`BitSlice::MAX_BITS`]: crate::slice::BitSlice::MAX_BITS
[`from_raw_parts_mut`]: crate::slice::from_raw_parts_mut
**/
pub unsafe fn from_raw_parts_unchecked_mut<'a, O, T>(
	data: BitPtr<Mut, O, T>,
	len: usize,
) -> &'a mut BitSlice<O, T>
where
	O: BitOrder,
	T: BitStore,
{
	data.span_unchecked(len).to_bitslice_mut()
}

mod api;
mod iter;
mod ops;
mod specialization;
mod traits;

//  Match the `core::slice` module topology.

pub use self::{
	api::{
		from_mut,
		from_raw_parts,
		from_raw_parts_mut,
		from_ref,
		BitSliceIndex,
	},
	iter::{
		Chunks,
		ChunksExact,
		ChunksExactMut,
		ChunksMut,
		Iter,
		IterMut,
		IterOnes,
		IterZeros,
		RChunks,
		RChunksExact,
		RChunksExactMut,
		RChunksMut,
		RSplit,
		RSplitMut,
		RSplitN,
		RSplitNMut,
		Split,
		SplitMut,
		SplitN,
		SplitNMut,
		Windows,
	},
};

#[cfg(test)]
mod tests;