bitvec\ptr/
span.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
//! Encoded pointer to a span region.

use crate::{
	domain::Domain,
	index::{
		BitIdx,
		BitTail,
	},
	mem::BitMemory,
	mutability::{
		Const,
		Mut,
		Mutability,
	},
	order::{
		BitOrder,
		Lsb0,
	},
	ptr::{
		Address,
		BitPtr,
		BitPtrError,
	},
	slice::BitSlice,
	store::BitStore,
};

use core::{
	any,
	convert::Infallible,
	fmt::{
		self,
		Debug,
		Display,
		Formatter,
		Pointer,
	},
	marker::PhantomData,
	ptr::{
		self,
		NonNull,
	},
};

use wyz::fmt::FmtForward;

#[cfg(any(feature = "alloc", test))]
use core::convert::TryInto;

/** Encoded handle to a bit-precision memory region.

Rust slices use a pointer/length encoding to represent regions of memory.
References to slices of data, `&[T]`, have the ABI layout `(*const T, usize)`.

`BitSpan` encodes a base address, a first-bit index, and a length counter, into
the Rust slice reference layout using this structure. This permits [`bitvec`] to
use an opaque reference type in its implementation of Rust interfaces that
require references, rather than immediate value types.

# Layout

This structure is a more complex version of the `*const T`/`usize` tuple that
Rust uses to represent slices throughout the language. It breaks the pointer and
counter fundamentals into sub-field components. Rust does not have bitfield
syntax, so the below description of the structure layout is in C++.

```cpp
template <typename T>
struct BitSpan {
  uintptr_t ptr_head : __builtin_ctzll(alignof(T));
  uintptr_t ptr_addr : sizeof(uintptr_T) * 8 - __builtin_ctzll(alignof(T));

  size_t len_head : 3;
  size_t len_bits : sizeof(size_t) * 8 - 3;
};
```

This means that the `BitSpan<O, T>` has three *logical* fields, stored in four
segments, across the two *structural* fields of the type. The widths and
placements of each segment are functions of the size of `*const T`, `usize`, and
of the alignment of the `T` referent buffer element type.

# Fields

This section describes the purpose, semantic meaning, and layout of the three
logical fields.

## Base Address

The address of the base element in a memory region is stored in all but the
lowest bits of the `ptr` field. An aligned pointer to `T` will always have its
lowest log<sub>2</sub>(byte width) bits zeroed, so those bits can be used to
store other information, as long as they are erased before dereferencing the
address as a pointer to `T`.

## Head Bit Index

For any referent element type `T`, the selection of a single bit within the
element requires log<sub>2</sub>(byte width) bits to select a byte within the
element `T`, and another three bits to select a bit within the selected byte.

|Type |Alignment|Trailing Zeros|Count Bits|
|:----|--------:|-------------:|---------:|
|`u8` |        1|             0|         3|
|`u16`|        2|             1|         4|
|`u32`|        4|             2|         5|
|`u64`|        8|             3|         6|

The index of the first live bit in the base element is split to have its three
least significant bits stored in the least significant edge of the `len` field,
and its remaining bits stored in the least significant edge of the `ptr` field.

## Length Counter

All but the lowest three bits of the `len` field are used to store a counter of
live bits in the referent region. When this is zero, the region is empty.
Because it is missing three bits, a `BitSpan` has only ⅛ of the index space of
a `usize` value.

# Significant Values

The following values represent significant instances of the `BitSpan` type.

## Null Slice

The fully-zeroed slot is not a valid member of the `BitSpan<O, T>` type; it is
reserved instead as the sentinel value for `Option::<BitSpan<O, T>>::None`.

## Canonical Empty Slice

All pointers with a `bits: 0` logical field are empty. Pointers that are used to
maintain ownership of heap buffers are not permitted to erase their `addr`
field. The canonical form of the empty slice has an `addr` value of
[`NonNull::<T>::dangling()`], but all pointers to an empty region are equivalent
regardless of address.

### Uninhabited Slices

Any empty pointer with a non-[`dangling()`] base address is considered to be an
uninhabited region. `BitSpan` never discards its address information, even as
operations may alter or erase its head-index or length values.

# Type Parameters

- `O`: The ordering within the register type. The bit-ordering used within a
  region colors all pointers to the region, and orderings can never mix.
- `T`: The memory type of the referent region. `BitSpan<O, T>` is a specialized
  `*[T]` slice pointer, and operates on memory in terms of the `T` type for
  access instructions and pointer calculation.

# Safety

`BitSpan` values may only be constructed from pointers provided by the
surrounding program.

# Undefined Behavior

Values of this type are binary-incompatible with slice pointers. Transmutation
of these values into any other type will result in an incorrect program, and
permit the program to begin illegal or undefined behaviors. This type may never
be manipulated in any way by user code outside of the APIs it offers to this
[`bitvec`]; it certainly may not be seen or observed by other crates.

[`NonNull::<T>::dangling()`]: core::ptr::NonNull::dangling
[`bitvec`]: crate
[`dangling()`]: core::ptr::NonNull::dangling
**/
#[repr(C)]
pub(crate) struct BitSpan<M = Const, O = Lsb0, T = usize>
where
	M: Mutability,
	O: BitOrder,
	T: BitStore,
{
	/// Memory address and high bits of the head index.
	///
	/// This stores the address of the zeroth element of the slice, as well as
	/// the high bits of the head bit cursor. It is typed as a [`NonNull<()>`]
	/// in order to provide null-value optimizations to `Option<BitSpan<O, T>>`,
	/// and because the presence of head-bit cursor information in the lowest
	/// bits means that the bit pattern will not uphold alignment properties
	/// required by `NonNull<T>`.
	///
	/// This field cannot be treated as the address of the zeroth byte of the
	/// slice domain, because the owning handle’s [`BitOrder`] implementation
	/// governs the bit pattern of the head cursor.
	///
	/// [`BitOrder`]: crate::order::BitOrder
	/// [`NonNull<()>`]: core::ptr::NonNull
	ptr: NonNull<()>,
	/// Length counter and low bits of the head index.
	///
	/// This stores the slice length counter (measured in bits) in all but its
	/// lowest three bits, and the lowest three bits of the index counter in its
	/// lowest three bits.
	len: usize,
	/// Bit-region pointers must be colored by the bit-ordering they use.
	_or: PhantomData<O>,
	/// This is semantically a pointer to a `T` element.
	_ty: PhantomData<Address<M, T>>,
}

impl<M, O, T> BitSpan<M, O, T>
where
	M: Mutability,
	O: BitOrder,
	T: BitStore,
{
	/// The canonical form of a pointer to an empty region.
	pub(crate) const EMPTY: Self = Self {
		/* Note: this must always construct the `T` dangling pointer, and then
		convert it into a pointer to `u8`. Creating `NonNull::dangling()`
		directly will always instantiate the `NonNull::<u8>::dangling()`
		pointer, which is VERY incorrect for any other `T` typarams.
		*/
		ptr: NonNull::<T>::dangling().cast::<()>(),
		len: 0,
		_or: PhantomData,
		_ty: PhantomData,
	};
	/// The number of low bits of `self.len` required to hold the low bits of
	/// the head [`BitIdx`] cursor.
	///
	/// This is always `3`, until Rust tries to target an architecture that does
	/// not have 8-bit bytes.
	///
	/// [`BitIdx`]: crate::index::BitIdx
	pub(crate) const LEN_HEAD_BITS: usize = 3;
	/// Marks the bits of `self.len` that hold part of the `head` logical field.
	pub(crate) const LEN_HEAD_MASK: usize = 0b111;
	/// Marks the bits of `self.ptr` that hold the `addr` logical field.
	pub(crate) const PTR_ADDR_MASK: usize = !0 << Self::PTR_HEAD_BITS;
	/// The number of low bits of `self.ptr` required to hold the high bits of
	/// the head [`BitIdx`] cursor.
	///
	/// [`BitIdx`]: crate::index::BitIdx
	pub(crate) const PTR_HEAD_BITS: usize =
		T::Mem::INDX as usize - Self::LEN_HEAD_BITS;
	/// Marks the bits of `self.ptr` that hold part of the `head` logical field.
	pub(crate) const PTR_HEAD_MASK: usize = !Self::PTR_ADDR_MASK;
	/// The inclusive-maximum number of bits that a `BitSpan` can cover.
	pub(crate) const REGION_MAX_BITS: usize = !0 >> Self::LEN_HEAD_BITS;
	/// The inclusive-maximum number of elements that the region described by a
	/// `BitSpan` can cover in memory.
	///
	/// This is the number of elements required to store [`REGION_MAX_BITS`],
	/// plus one because a region could start in the middle of its base element
	/// and thus push the final bits into a new element.
	///
	/// Since the region is ⅛th the bit span of a `usize` counter already, this
	/// number is guaranteed to be well below the limits of arithmetic or Rust’s
	/// own constraints on memory region handles.
	///
	/// [`REGION_MAX_BITS`]: Self::REGION_MAX_BITS
	pub(crate) const REGION_MAX_ELTS: usize =
		crate::mem::elts::<T::Mem>(Self::REGION_MAX_BITS) + 1;

	//  Constructors

	/// Constructs an empty `BitSpan` at a bare pointer.
	///
	/// This is used when the region has no contents, but the pointer
	/// information must be retained.
	///
	/// # Parameters
	///
	/// - `addr`: Some address of a `T` element or region. It must be valid in
	///   the caller’s memory space.
	///
	/// # Returns
	///
	/// A zero-length `BitSpan` pointing to `addr`.
	///
	/// # Panics
	///
	/// This function panics if `addr` is null or misaligned. All pointers
	/// received from the allocation system are required to satisfy this
	/// constraint, so a failure is an exceptional program fault rather than an
	/// expected logical mistake.
	#[cfg(feature = "alloc")]
	#[cfg(not(tarpaulin_include))]
	pub(crate) fn uninhabited(addr: Address<M, T>) -> Self {
		Self {
			ptr: addr.to_nonnull().cast::<()>(),
			len: 0,
			_or: PhantomData,
			_ty: PhantomData,
		}
	}

	pub(crate) fn new(
		addr: Address<M, T>,
		head: BitIdx<T::Mem>,
		bits: usize,
	) -> Result<Self, BitSpanError<T>> {
		if bits > Self::REGION_MAX_BITS {
			return Err(BitSpanError::TooLong(bits));
		};
		let base = BitPtr::<M, O, T>::new(addr, head);
		let last = base.wrapping_add(bits);
		if last < base {
			return Err(BitSpanError::TooHigh(addr.to_const()));
		};

		Ok(unsafe { Self::new_unchecked(addr, head, bits) })
	}

	/// Creates a new `BitSpan` from its components, without any validity
	/// checks.
	///
	/// # Safety
	///
	/// ***ABSOLUTELY NONE.*** This function *only* packs its arguments into the
	/// bit pattern of the `BitSpan` type. It should only be used in
	/// contexts where a previously extant `BitSpan` was constructed with
	/// ancestry known to have survived [`::new`], and any manipulations of its
	/// raw components are known to be valid for reconstruction.
	///
	/// # Parameters
	///
	/// See [`::new`].
	///
	/// # Returns
	///
	/// See [`::new`].
	///
	/// [`::new`]: Self::new
	pub(crate) unsafe fn new_unchecked(
		addr: Address<M, T>,
		head: BitIdx<T::Mem>,
		bits: usize,
	) -> Self {
		let head = head.value() as usize;
		let ptr_data = addr.value() & Self::PTR_ADDR_MASK;
		let ptr_head = head >> Self::LEN_HEAD_BITS;

		let len_head = head & Self::LEN_HEAD_MASK;
		let len_bits = bits << Self::LEN_HEAD_BITS;

		Self {
			ptr: NonNull::new_unchecked((ptr_data | ptr_head) as *mut ()),
			len: len_bits | len_head,
			_or: PhantomData,
			_ty: PhantomData,
		}
	}

	//  Converters

	/// Converts an opaque `*BitSlice` wide pointer back into a `BitSpan`.
	///
	/// See [`::from_bitslice_ptr()`].
	///
	/// [`::from_bitslice_ptr()`]: Self::from_bitslice_ptr
	//  Mutable pointers can become mutable or immutable span descriptors.
	#[inline(always)]
	#[cfg(not(tarpaulin_include))]
	pub(crate) fn from_bitslice_ptr_mut(raw: *mut BitSlice<O, T>) -> Self {
		let BitSpan { ptr, len, _or, .. } =
			BitSpan::from_bitslice_ptr(raw as *const BitSlice<O, T>);
		Self {
			ptr,
			len,
			_or,
			_ty: PhantomData,
		}
	}

	/// Casts the `BitSpan` to an opaque `*BitSlice` pointer.
	///
	/// This is the inverse of [`::from_bitslice_ptr()`].
	///
	/// # Parameters
	///
	/// - `self`
	///
	/// # Returns
	///
	/// `self`, opacified as a `*BitSlice` raw pointer rather than a `BitSpan`
	/// structure.
	///
	/// [`::from_bitslice_ptr()`]: Self::from_bitslice_ptr
	//  Mutable or immutable span descriptors can become immutable pointers.
	pub(crate) fn to_bitslice_ptr(self) -> *const BitSlice<O, T> {
		ptr::slice_from_raw_parts(
			self.ptr.as_ptr() as *const u8 as *const (),
			self.len,
		) as *const BitSlice<O, T>
	}

	/// Casts the `BitSpan` to a `&BitSlice` reference.
	///
	/// This requires that the pointer be to a validly-allocated region that
	/// is not destroyed for the duration of the provided lifetime.
	/// Additionally, the bits described by `self` must not be writable by any
	/// other handle.
	///
	/// # Lifetimes
	///
	/// - `'a`: A caller-provided lifetime that must not be greater than the
	///   duration of the referent buffer.
	///
	/// # Parameters
	///
	/// - `self`
	///
	/// # Returns
	///
	/// `self`, opacified as a bit-slice region reference rather than a
	/// `BitSpan` structure.
	//  Mutable or immutable span descriptors can become immutable references.
	#[inline(always)]
	#[cfg(not(tarpaulin_include))]
	pub(crate) fn to_bitslice_ref<'a>(self) -> &'a BitSlice<O, T> {
		unsafe { &*self.to_bitslice_ptr() }
	}

	/// Casts the span to another element type.
	///
	/// This does not alter the encoded value of the pointer! It only
	/// reinterprets the element type, and the encoded value may shift
	/// significantly in the result type. Use with caution.
	pub(crate) fn cast<U>(self) -> BitSpan<M, O, U>
	where U: BitStore {
		let Self { ptr, len, .. } = self;
		BitSpan {
			ptr,
			len,
			..BitSpan::EMPTY
		}
	}

	/// Split the region descriptor into three descriptors, with the interior
	/// set to a different register type.
	///
	/// By placing the logic in `BitSpan` rather than in `BitSlice`, `BitSlice`
	/// can safely call into it for both shared and exclusive references,
	/// without running into any reference capability issues in the compiler.
	///
	/// # Type Parameters
	///
	/// - `U`: A second [`BitStore`] implementation. This **must** be of the
	///   same type family as `T`; this restriction cannot be enforced in the
	///   type system, but **must** hold at the call site.
	///
	/// # Safety
	///
	/// This can only be called within `BitSlice::align_to{,_mut}`.
	///
	/// # Algorithm
	///
	/// This uses the slice [`Domain`] to split the underlying slice into
	/// regions that cannot (edge) and can (center) be reäligned. The center
	/// slice is then reäligned to `U`, and the edge slices produced from *that*
	/// are merged with the edge slices produced by the domain check.
	///
	/// This results in edge pointers returned from this function that correctly
	/// handle partially-used edge elements as well as misaligned slice
	/// locations.
	///
	/// [`BitStore`]: crate::store::BitStore
	/// [`Domain`]: crate::domain::Domain
	/// [`slice::align_to`]: https://doc.rust-lang.org/stable/std/primitive.slice.html#method.align_to
	pub(crate) unsafe fn align_to<U>(self) -> (Self, BitSpan<M, O, U>, Self)
	where U: BitStore {
		match self.to_bitslice_ref().domain() {
			Domain::Enclave { .. } => (self, BitSpan::EMPTY, BitSpan::EMPTY),
			Domain::Region { head, body, tail } => {
				//  Reälign the fully-spanning center slice, creating edge
				//  slices of the original type to merge with `head` and `tail`.
				let (l, c, r) = body.align_to::<U::Mem>();

				let t_bits = T::Mem::BITS as usize;
				let u_bits = U::Mem::BITS as usize;

				let l_bits = l.len() * t_bits;
				let c_bits = c.len() * u_bits;
				let r_bits = r.len() * t_bits;

				let l_addr = l.as_ptr() as *const T as *mut T;
				let c_addr = c.as_ptr() as *const U as *mut U;
				let r_addr = r.as_ptr() as *const T as *mut T;

				/* Compute a pointer for the left-most return span.

				The left span must contain the domain’s head element, if
				produced, as well as the `l` slice produced above. The left span
				begins in:

				- if `head` exists, then `head.1`
				- else, if `l` is not empty, then `l`
				- else, it is the empty pointer
				*/
				let l_ptr = match head {
					/* If the head exists, then the left span begins in it, and
					runs for the remaining bits in it, and all the bits of `l`.
					*/
					Some((head, addr)) => BitSpan::new_unchecked(
						Address::new_unchecked(addr as *const _ as usize),
						head,
						t_bits - head.value() as usize + l_bits,
					),
					//  If the head does not exist, then the left span only
					//  covers `l`. If `l` is empty, then so is the span.
					None => {
						if l_bits == 0 {
							BitSpan::EMPTY
						}
						else {
							BitSpan::new_unchecked(
								Address::new_unchecked(l_addr as usize),
								BitIdx::ZERO,
								l_bits,
							)
						}
					},
				};

				let c_ptr = if c_bits == 0 {
					BitSpan::EMPTY
				}
				else {
					BitSpan::new_unchecked(
						Address::new_unchecked(c_addr as usize),
						BitIdx::ZERO,
						c_bits,
					)
				};

				/* Compute a pointer for the right-most return span.

				The right span must contain the `r` slice produced above, as
				well as the domain’s tail element, if produced. The right span
				begins in:

				- if `r` is not empty, then `r`
				- else, if `tail` exists, then `tail.0`
				- else, it is the empty pointer
				*/
				let r_ptr = match tail {
					//  If the tail exists, then the right span extends into it.
					Some((addr, tail)) => BitSpan::new_unchecked(
						//  If the `r` slice exists, then the right span
						//  *begins* in it.
						if r.is_empty() {
							Address::new_unchecked(addr as *const T as usize)
						}
						else {
							Address::new_unchecked(r_addr as *const T as usize)
						},
						BitIdx::ZERO,
						tail.value() as usize + r_bits,
					),
					//  If the tail does not exist, then the right span is only
					//  `r`.
					None => {
						//  If `r` exists, then the right span covers it.
						if !r.is_empty() {
							BitSpan::new_unchecked(
								Address::new_unchecked(r_addr as usize),
								BitIdx::ZERO,
								r_bits,
							)
						}
						//  Otherwise, the right span is empty.
						else {
							BitSpan::EMPTY
						}
					},
				};

				(l_ptr, c_ptr, r_ptr)
			},
		}
	}

	//  Encoded fields

	/// Gets the base element address of the referent region.
	///
	/// # Parameters
	///
	/// - `&self`
	///
	/// # Returns
	///
	/// The address of the starting element of the memory region. This address
	/// is weakly typed so that it can be cast by call sites to the most useful
	/// access type.
	pub(crate) fn address(&self) -> Address<M, T> {
		unsafe {
			Address::new_unchecked(
				self.ptr.as_ptr() as usize & Self::PTR_ADDR_MASK,
			)
		}
	}

	/// Overwrites the data pointer with a new address. This method does not
	/// perform safety checks on the new pointer.
	///
	/// # Parameters
	///
	/// - `&mut self`
	/// - `ptr`: The new address of the `BitSpan`’s domain.
	///
	/// # Safety
	///
	/// None. The invariants of [`::new`] must be checked at the caller.
	///
	/// [`::new`]: Self::new
	#[cfg(any(feature = "alloc", test))]
	pub(crate) unsafe fn set_address<A>(&mut self, addr: A)
	where
		A: TryInto<Address<M, T>>,
		A::Error: Debug,
	{
		let addr = addr.try_into().unwrap();
		let mut addr_value = addr.value();
		addr_value &= Self::PTR_ADDR_MASK;
		addr_value |= self.ptr.as_ptr() as usize & Self::PTR_HEAD_MASK;
		self.ptr = NonNull::new_unchecked(addr_value as *mut ());
	}

	/// Gets the starting bit index of the referent region.
	///
	/// # Parameters
	///
	/// - `&self`
	///
	/// # Returns
	///
	/// A [`BitIdx`] of the first live bit in the element at the
	/// [`self.address()`] address.
	///
	/// [`BitIdx`]: crate::index::BitIdx
	/// [`self.address()`]: Self::pointer
	pub(crate) fn head(&self) -> BitIdx<T::Mem> {
		//  Get the high part of the head counter out of the pointer.
		let ptr = self.ptr.as_ptr() as usize;
		let ptr_head = (ptr & Self::PTR_HEAD_MASK) << Self::LEN_HEAD_BITS;
		//  Get the low part of the head counter out of the length.
		let len_head = self.len & Self::LEN_HEAD_MASK;
		//  Combine and mark as an index.
		unsafe { BitIdx::new_unchecked((ptr_head | len_head) as u8) }
	}

	/// Write a new `head` value into the pointer, with no other effects.
	///
	/// # Parameters
	///
	/// - `&mut self`
	/// - `head`: A new starting index.
	///
	/// # Effects
	///
	/// `head` is written into the `.head` logical field, without affecting
	/// `.addr` or `.bits`.
	#[cfg(any(feature = "alloc", test))]
	pub(crate) unsafe fn set_head(&mut self, head: BitIdx<T::Mem>) {
		let head = head.value() as usize;
		let mut ptr = self.ptr.as_ptr() as usize;

		ptr &= Self::PTR_ADDR_MASK;
		ptr |= head >> Self::LEN_HEAD_BITS;
		self.ptr = NonNull::new_unchecked(ptr as *mut ());

		self.len &= !Self::LEN_HEAD_MASK;
		self.len |= head & Self::LEN_HEAD_MASK;
	}

	/// Gets the number of live bits in the referent region.
	///
	/// # Parameters
	///
	/// - `&self`
	///
	/// # Returns
	///
	/// A count of how many live bits the region pointer describes.
	pub(crate) fn len(&self) -> usize {
		self.len >> Self::LEN_HEAD_BITS
	}

	/// Sets the `.bits` logical member to a new value.
	///
	/// # Parameters
	///
	/// - `&mut self`
	/// - `len`: A new bit length. This must not be greater than
	///   [`REGION_MAX_BITS`].
	///
	/// # Effects
	///
	/// The `new_len` value is written directly into the `.bits` logical field.
	///
	/// [`REGION_MAX_BITS`]: Self::REGION_MAX_BITS
	pub(crate) unsafe fn set_len(&mut self, new_len: usize) {
		debug_assert!(
			new_len <= Self::REGION_MAX_BITS,
			"Length {} out of range",
			new_len,
		);
		self.len &= Self::LEN_HEAD_MASK;
		self.len |= new_len << Self::LEN_HEAD_BITS;
	}

	/// Gets a pointer to the starting bit of the span.
	pub(crate) fn as_bitptr(self) -> BitPtr<M, O, T> {
		BitPtr::new(self.address(), self.head())
	}

	/// Gets the three logical components of the pointer.
	///
	/// # Parameters
	///
	/// - `&self`
	///
	/// # Returns
	///
	/// - `.0`: The base address of the referent memory region.
	/// - `.1`: The index of the first live bit in the first element of the
	///   region.
	/// - `.2`: The number of live bits in the region.
	pub(crate) fn raw_parts(&self) -> (Address<M, T>, BitIdx<T::Mem>, usize) {
		(self.address(), self.head(), self.len())
	}

	//  Computed information

	/// Computes the number of elements, starting at [`self.address()`], that
	/// the region touches.
	///
	/// # Parameters
	///
	/// - `&self`
	///
	/// # Returns
	///
	/// The count of all elements, starting at [`self.address()`], that contain
	/// live bits included in the referent region.
	///
	/// [`self.address()`]: Self::pointer
	pub(crate) fn elements(&self) -> usize {
		//  Find the distance of the last bit from the base address.
		let total = self.len() + self.head().value() as usize;
		//  The element count is always the bit count divided by the bit width,
		let base = total >> T::Mem::INDX;
		//  plus whether any fractional element exists after the division.
		let tail = total as u8 & T::Mem::MASK;
		base + (tail != 0) as usize
	}

	/// Computes the tail index for the first dead bit after the live bits.
	///
	/// # Parameters
	///
	/// - `&self`
	///
	/// # Returns
	///
	/// A `BitTail` that is the index of the first dead bit after the last live
	/// bit in the last element. This will almost always be in the range `1 ..=
	/// T::Mem::BITS`.
	///
	/// It will be zero only when `self` is empty.
	pub(crate) fn tail(&self) -> BitTail<T::Mem> {
		let (head, len) = (self.head(), self.len());

		if head.value() == 0 && len == 0 {
			return BitTail::ZERO;
		}

		//  Compute the in-element tail index as the head plus the length,
		//  modulated by the element width.
		let tail = (head.value() as usize + len) & T::Mem::MASK as usize;
		/* If the tail is zero, wrap it to `T::Mem::BITS` as the maximal. This
		upshifts `1` (tail is zero) or `0` (tail is not), then sets the upshift
		on the rest of the tail, producing something in the range
		`1 ..= T::Mem::BITS`.
		*/
		unsafe {
			BitTail::new_unchecked(
				(((tail == 0) as u8) << T::Mem::INDX) | tail as u8,
			)
		}
	}

	//  Manipulators

	/// Increments the `.head` logical field, rolling over into `.addr`.
	///
	/// # Parameters
	///
	/// - `&mut self`
	///
	/// # Effects
	///
	/// Increments `.head` by one. If the increment resulted in a rollover to
	/// `0`, then the `.addr` field is increased to the next [`T::Mem`]
	/// stepping.
	///
	/// [`T::Mem`]: crate::store::BitStore::Mem
	pub(crate) unsafe fn incr_head(&mut self) {
		//  Increment the cursor, permitting rollover to `T::Mem::BITS`.
		let head = self.head().value() as usize + 1;

		//  Write the low bits into the `.len` field, then discard them.
		self.len &= !Self::LEN_HEAD_MASK;
		self.len |= head & Self::LEN_HEAD_MASK;
		let head = head >> Self::LEN_HEAD_BITS;

		//  Erase the high bits of `.head` from `.ptr`,
		let mut ptr = self.ptr.as_ptr() as usize;
		ptr &= Self::PTR_ADDR_MASK;
		/* Then numerically add the high bits of `.head` into the low bits of
		`.ptr`. If the head increment rolled over into a new element, this will
		have the effect of raising the `.addr` logical field to the next element
		address, in one instruction.
		*/
		ptr += head;
		self.ptr = NonNull::new_unchecked(ptr as *mut ());
	}

	//  Comparators

	/// Renders the pointer structure into a formatter for use during
	/// higher-level type [`Debug`] implementations.
	///
	/// # Parameters
	///
	/// - `&self`
	/// - `fmt`: The formatter into which the pointer is rendered.
	/// - `name`: The suffix of the structure rendering its pointer. The `Bit`
	///   prefix is applied to the object type name in this format.
	/// - `fields`: Any additional fields in the object’s debug info to be
	///   rendered.
	///
	/// # Returns
	///
	/// The result of formatting the pointer into the receiver.
	///
	/// # Behavior
	///
	/// This function writes `Bit{name}<{ord}, {type}> {{ {fields } }}` into the
	/// `fmt` formatter, where `{fields}` includes the address, head index, and
	/// bit length of the pointer, as well as any additional fields provided by
	/// the caller.
	///
	/// Higher types in the crate should use this function to drive their
	/// [`Debug`] implementations, and then use [`BitSlice`]’s list formatters
	/// to display their buffer contents.
	///
	/// [`BitSlice`]: crate::slice::BitSlice
	/// [`Debug`]: core::fmt::Debug
	pub(crate) fn render<'a>(
		&'a self,
		fmt: &'a mut Formatter,
		name: &'a str,
		fields: impl IntoIterator<Item = &'a (&'a str, &'a dyn Debug)>,
	) -> fmt::Result {
		write!(
			fmt,
			"Bit{}<{}, {}>",
			name,
			any::type_name::<O>(),
			any::type_name::<T::Mem>()
		)?;
		let mut builder = fmt.debug_struct("");
		builder
			.field("addr", &self.address().fmt_pointer())
			.field("head", &self.head().fmt_binary())
			.field("bits", &self.len());
		for (name, value) in fields {
			builder.field(name, value);
		}
		builder.finish()
	}
}

impl<O, T> BitSpan<Const, O, T>
where
	O: BitOrder,
	T: BitStore,
{
	/// Converts an opaque `*BitSlice` wide pointer back into a `BitSpan`.
	///
	/// This should compile down to a noöp, but the implementation should
	/// nevertheless be an explicit deconstruction and reconstruction rather
	/// than a bare [`mem::transmute`], to guard against unforseen compiler
	/// reördering.
	///
	/// # Parameters
	///
	/// - `raw`: An opaque bit-region pointer
	///
	/// # Returns
	///
	/// `raw`, interpreted as a `BitSpan` so that it can be used as more than an
	/// opaque handle.
	///
	/// [`mem::transmute`]: core::mem::transmute
	//  Immutable pointers can only become immutable span descriptors.
	pub(crate) fn from_bitslice_ptr(raw: *const BitSlice<O, T>) -> Self {
		let slice_nn = match NonNull::new(raw as *const [()] as *mut [()]) {
			Some(nn) => nn,
			None => return Self::EMPTY,
		};
		let ptr = slice_nn.cast::<()>();
		let len = unsafe { slice_nn.as_ref() }.len();
		Self {
			ptr,
			len,
			_or: PhantomData,
			_ty: PhantomData,
		}
	}

	/// Assert that an immutable span pointer is in fact mutable.
	///
	/// This can only be called from a context where a mutable span descriptor
	/// was lowered to immutable and needs to be re-raised; it is Undefined
	/// Behavior in the compiler to call it on a span descriptor that was never
	/// mutable.
	pub(crate) unsafe fn assert_mut(self) -> BitSpan<Mut, O, T> {
		let Self { ptr, len, _or, .. } = self;
		BitSpan {
			ptr,
			len,
			_or,
			_ty: PhantomData,
		}
	}
}

impl<O, T> BitSpan<Mut, O, T>
where
	O: BitOrder,
	T: BitStore,
{
	/// Casts the `BitSpan` to an opaque `*BitSlice` pointer.
	///
	/// See [`.to_bitslice_ptr()`].
	///
	/// [`.to_bitslice_ptr()`]: Self::to_bitslice_ptr
	//  Only mutable span descriptors can become mutable pointers.
	#[inline(always)]
	#[cfg(not(tarpaulin_include))]
	pub(crate) fn to_bitslice_ptr_mut(self) -> *mut BitSlice<O, T> {
		self.to_bitslice_ptr() as *mut BitSlice<O, T>
	}

	/// Casts the `BitSpan` to a `&mut BitSlice` reference.
	///
	/// This requires that the pointer be to a validly-allocated region that is
	/// not destroyed for the duration of the provided lifetime. Additionally,
	/// the bits described by `self` must not be viewable by any other handle.
	///
	/// # Lifetimes
	///
	/// - `'a`: A caller-provided lifetime that must not be greater than the
	///   duration of the referent buffer.
	///
	/// # Parameters
	///
	/// - `self`
	///
	/// # Returns
	///
	/// `self`, opacified as an exclusive bit-slice region reference rather than
	/// a `BitSpan` structure.
	//  Only mutable span descriptors can become mutable references.
	#[inline(always)]
	#[cfg(not(tarpaulin_include))]
	pub(crate) fn to_bitslice_mut<'a>(self) -> &'a mut BitSlice<O, T> {
		unsafe { &mut *self.to_bitslice_ptr_mut() }
	}
}

#[cfg(not(tarpaulin_include))]
impl<M, O, T> Clone for BitSpan<M, O, T>
where
	M: Mutability,
	O: BitOrder,
	T: BitStore,
{
	fn clone(&self) -> Self {
		*self
	}
}

impl<M, O, T> Eq for BitSpan<M, O, T>
where
	M: Mutability,
	O: BitOrder,
	T: BitStore,
{
}

impl<M1, M2, O, T1, T2> PartialEq<BitSpan<M2, O, T2>> for BitSpan<M1, O, T1>
where
	M1: Mutability,
	M2: Mutability,
	O: BitOrder,
	T1: BitStore,
	T2: BitStore,
{
	fn eq(&self, other: &BitSpan<M2, O, T2>) -> bool {
		let (addr_a, head_a, bits_a) = self.raw_parts();
		let (addr_b, head_b, bits_b) = other.raw_parts();
		//  Since ::BITS is an associated const, the compiler will automatically
		//  replace the entire function with `false` when the types don’t match.
		T1::Mem::BITS == T2::Mem::BITS
			&& addr_a.value() == addr_b.value()
			&& head_a.value() == head_b.value()
			&& bits_a == bits_b
	}
}

#[cfg(not(tarpaulin_include))]
impl<M, O, T> Default for BitSpan<M, O, T>
where
	M: Mutability,
	O: BitOrder,
	T: BitStore,
{
	#[inline(always)]
	fn default() -> Self {
		Self::EMPTY
	}
}

#[cfg(not(tarpaulin_include))]
impl<M, O, T> Debug for BitSpan<M, O, T>
where
	M: Mutability,
	O: BitOrder,
	T: BitStore,
{
	#[inline(always)]
	fn fmt(&self, fmt: &mut Formatter) -> fmt::Result {
		Pointer::fmt(self, fmt)
	}
}

#[cfg(not(tarpaulin_include))]
impl<M, O, T> Pointer for BitSpan<M, O, T>
where
	M: Mutability,
	O: BitOrder,
	T: BitStore,
{
	#[inline(always)]
	fn fmt(&self, fmt: &mut Formatter) -> fmt::Result {
		self.render(fmt, "Ptr", None)
	}
}

impl<M, O, T> Copy for BitSpan<M, O, T>
where
	M: Mutability,
	O: BitOrder,
	T: BitStore,
{
}

/// An error produced when creating `BitSpan` encoded references.
#[derive(Clone, Copy, Eq, Ord, PartialEq, PartialOrd)]
pub enum BitSpanError<T>
where T: BitStore
{
	/// The base `BitPtr` is invalid.
	InvalidBitptr(BitPtrError<T>),
	/// `BitSpan` domains have a length ceiling.
	TooLong(usize),
	/// `BitSpan` domains have an address ceiling.
	TooHigh(*const T),
}

#[cfg(not(tarpaulin_include))]
impl<T> From<BitPtrError<T>> for BitSpanError<T>
where T: BitStore
{
	#[inline(always)]
	fn from(err: BitPtrError<T>) -> Self {
		Self::InvalidBitptr(err)
	}
}

#[cfg(not(tarpaulin_include))]
impl<T> From<Infallible> for BitSpanError<T>
where T: BitStore
{
	#[inline(always)]
	fn from(_: Infallible) -> Self {
		unreachable!("Infallible errors can never be produced");
	}
}

#[cfg(not(tarpaulin_include))]
impl<T> Debug for BitSpanError<T>
where T: BitStore
{
	#[inline]
	fn fmt(&self, fmt: &mut Formatter) -> fmt::Result {
		let tname = any::type_name::<T>();
		write!(fmt, "BitSpanError<{}>::", tname,)?;
		match self {
			Self::InvalidBitptr(err) => {
				fmt.debug_tuple("InvalidBitptr").field(&err).finish()
			},
			Self::TooLong(len) => {
				fmt.debug_tuple("TooLong").field(&len).finish()
			},
			Self::TooHigh(addr) => {
				fmt.debug_tuple("TooHigh").field(&addr).finish()
			},
		}
	}
}

#[cfg(not(tarpaulin_include))]
impl<T> Display for BitSpanError<T>
where T: BitStore
{
	#[inline]
	fn fmt(&self, fmt: &mut Formatter) -> fmt::Result {
		match self {
			Self::InvalidBitptr(err) => Display::fmt(err, fmt),
			Self::TooLong(len) => write!(
				fmt,
				"Length {} is too long to encode in a bit slice, which can \
				 only accept {} bits",
				len,
				BitSpan::<Const, Lsb0, usize>::REGION_MAX_BITS
			),
			Self::TooHigh(addr) => {
				write!(fmt, "Address {:p} would wrap the address space", addr)
			},
		}
	}
}

unsafe impl<T> Send for BitSpanError<T> where T: BitStore
{
}

unsafe impl<T> Sync for BitSpanError<T> where T: BitStore
{
}

#[cfg(feature = "std")]
impl<T> std::error::Error for BitSpanError<T> where T: BitStore
{
}

#[cfg(test)]
mod tests {
	use super::*;
	use crate::{
		prelude::*,
		ptr::AddressError,
	};
	use core::{
		mem,
		ptr,
	};

	#[test]
	fn ctor() {
		assert!(matches!(
			Address::<Const, u8>::new(0),
			Err(AddressError::Null)
		));
		assert!(matches!(
			Address::<Const, u16>::new(3),
			Err(AddressError::Misaligned(addr)) if addr as usize == 3
		));

		//  Double check the null pointers, but they are in practice impossible
		//  to construct.
		assert_eq!(
			BitSpan::<Const, LocalBits, u8>::from_bitslice_ptr(
				ptr::slice_from_raw_parts(ptr::null::<()>(), 1)
					as *mut BitSlice<LocalBits, u8>
			),
			BitSpan::<Const, LocalBits, u8>::EMPTY,
		);

		let data = 0u16;
		let mut addr = Address::from(&data);
		let head = BitIdx::new(5).unwrap();
		assert!(BitSpan::<_, Lsb0, _>::new(addr, head, !3).is_err());
		addr = unsafe { Address::new_unchecked(!1) };
		assert!(BitSpan::<_, Lsb0, _>::new(addr, head, 50).is_err());
	}

	#[test]
	fn recast() {
		let data = 0u32;
		let bitspan = unsafe { BitPtr::from_ref(&data).span_unchecked(32) };
		let raw_ptr = bitspan.to_bitslice_ptr();
		assert_eq!(
			bitspan,
			BitSpan::<Const, Lsb0, u32>::from_bitslice_ptr(raw_ptr)
		);
	}

	#[test]
	fn realign() {
		let data = [0u8; 10];
		let bits = data.view_bits::<LocalBits>();

		let (l, c, r) = unsafe { bits.as_bitspan().align_to::<u16>() };
		assert_eq!(l.len() + c.len() + r.len(), 80);

		let (l, c, r) = unsafe { bits[4 ..].as_bitspan().align_to::<u16>() };
		assert_eq!(l.len() + c.len() + r.len(), 76);

		let (l, c, r) = unsafe { bits[.. 76].as_bitspan().align_to::<u16>() };
		assert_eq!(l.len() + c.len() + r.len(), 76);

		let (l, c, r) = unsafe { bits[8 ..].as_bitspan().align_to::<u16>() };
		assert_eq!(l.len() + c.len() + r.len(), 72);

		let (l, c, r) = unsafe { bits[.. 72].as_bitspan().align_to::<u16>() };
		assert_eq!(l.len() + c.len() + r.len(), 72);

		let (l, c, r) = unsafe { bits[4 .. 76].as_bitspan().align_to::<u16>() };
		assert_eq!(l.len() + c.len() + r.len(), 72);
	}

	#[test]
	fn modify() {
		let (a, b) = (0u16, 1u16);

		let mut bitspan = a.view_bits::<LocalBits>().as_bitspan();
		let mut expected = (&a as *const _ as usize, 16usize << 3);

		assert_eq!(bitspan.address().to_const(), &a as *const _);
		assert_eq!(bitspan.ptr.as_ptr() as usize, expected.0);
		assert_eq!(bitspan.len, expected.1);

		expected.0 = &b as *const _ as usize;
		unsafe {
			bitspan.set_address(&b as *const _);
		}
		assert_eq!(bitspan.address().to_const(), &b as *const _);
		assert_eq!(bitspan.ptr.as_ptr() as usize, expected.0);
		assert_eq!(bitspan.len, expected.1);

		let orig_head = bitspan.head();
		unsafe {
			bitspan.set_head(orig_head.next().0);
		}
		assert_eq!(bitspan.head(), orig_head.next().0);
	}

	#[test]
	fn mem_size() {
		assert_eq!(
			mem::size_of::<BitSpan<Const, LocalBits, usize>>(),
			mem::size_of::<*const [usize]>()
		);
		assert_eq!(
			mem::size_of::<Option<BitSpan<Const, LocalBits, usize>>>(),
			mem::size_of::<*const [usize]>()
		);
	}

	#[test]
	#[cfg(feature = "alloc")]
	fn render() {
		#[cfg(not(feature = "std"))]
		use alloc::format;

		assert_eq!(
			format!("{}", Address::<Const, u8>::new(0).unwrap_err()),
			"`bitvec` will not operate on the null pointer"
		);
		assert_eq!(
			format!("{}", Address::<Const, u16>::new(0x13579).unwrap_err()),
			"`bitvec` requires that the address 0x13579 clear its least 1 bits \
			 to be aligned for type u16"
		);
		assert_eq!(
			format!("{}", Address::<Const, u32>::new(0x13579).unwrap_err()),
			"`bitvec` requires that the address 0x13579 clear its least 2 bits \
			 to be aligned for type u32"
		);
	}
}