bitvec/index.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593
/*! Well-typed counters and register descriptors.
This module provides session types which encode a strict chain of modification
to map semantic indices within a [`BitSlice`] to the electrical register values
used to interact with the memory bus.
The main advantage of the types in this module is that they provide
register-dependent range requirements for counter values, making it impossible
to have an index out of bounds for a register. They also create a sequence of
type transformations that assure the library about the continued validity of
each value in its surrounding context.
By eliminating public constructors from arbitrary integers, [`bitvec`] can
guarantee that only it can produce seed values, and only trusted functions can
transform their numeric values or types, until the program reaches the property
that it requires. This chain of assurance means that memory operations can be
confident in the correctness of their actions and effects.
# Type Sequence
The library produces [`BitIdx`] values from region computation. These types
cannot be publicly constructed, and are only ever the result of pointer
analysis. As such, they rely on correctness of the memory regions provided to
library entry points, and those entry points can leverage the Rust type system
to ensure safety there.
[`BitIdx`] is transformed to [`BitPos`] through the [`BitOrder`] trait. The
[`order`] module provides verification functions that implementors can use to
demonstrate correctness. `BitPos` is the seed type that describes memory
operations, and is used to create selection masks [`BitSel`] and [`BitMask`].
[`BitIdx`]: crate::index::BitIdx
[`BitMask`]: crate::index::BitMask
[`BitOrder`]: crate::order::BitOrder
[`BitPos`]: crate::index::BitPos
[`BitSel`]: crate::index::BitSel
[`BitSlice`]: crate::slice::BitSlice
[`bitvec`]: crate
[`order`]: crate::order
!*/
use crate::{
mem::BitRegister,
order::BitOrder,
};
use core::{
any,
convert::TryFrom,
fmt::{
self,
Binary,
Debug,
Display,
Formatter,
},
iter::{
FusedIterator,
Sum,
},
marker::PhantomData,
ops::{
BitAnd,
BitOr,
Not,
},
};
/** A semantic index counter within a register element `R`.
This type is a counter in the ring `0 .. R::BITS`, and serves to mark a semantic
index within some register element. It is a virtual index, and is the stored
value used in pointer encodings to track region start information.
It is translated to an electrical index through the [`BitOrder`] trait. This
virtual index is the only counter that can be used for address computation, and
once lowered to an electrical index through [`BitOrder::at`], the electrical
address can only be used for instruction selection.
# Type Parameters
- `R`: The register element that this index governs.
# Validity
Values of this type are **required** to be in the range `0 .. R::BITS`. Any
value not less than [`R::BITS`] makes the program invalid, and will likely cause
either a crash or incorrect memory access.
# Construction
This type can never be constructed outside of the [`bitvec`] crate. It is passed
in to [`BitOrder`] implementations, which may use it to construct electrical
position, selection, or mask values from it. All values of this type constructed
by [`bitvec`] are known to be correct in their region; no other construction
site can be trusted.
[`BitOrder`]: crate::order::BitOrder
[`BitOrder::at`]: crate::order::BitOrder::at
[`R::BITS`]: crate::mem::BitMemory::BITS
[`bitvec`]: crate
**/
// #[rustc_layout_scalar_valid_range_end(R::BITS)]
#[repr(transparent)]
#[derive(Clone, Copy, Default, Eq, Hash, Ord, PartialEq, PartialOrd)]
pub struct BitIdx<R>
where R: BitRegister
{
/// Semantic index counter within a register, constrained to `0 .. R::BITS`.
idx: u8,
/// Marker for the register type.
_ty: PhantomData<R>,
}
impl<R> BitIdx<R>
where R: BitRegister
{
/// The inclusive maximum index within an element `R`.
pub const LAST: Self = Self {
idx: R::MASK,
_ty: PhantomData,
};
/// The inclusive minimum index within an element `R`.
pub const ZERO: Self = Self {
idx: 0,
_ty: PhantomData,
};
/// Wraps a counter value as a known-good index into an `R` register.
///
/// # Parameters
///
/// - `value`: The counter value to mark as an index. This must be not less
/// than [`Self::ZERO`] and not more than [`Self::LAST`].
///
/// # Returns
///
/// This returns `value`, marked as either a valid or invalid index by
/// whether or not it is within the valid range `0 .. R::BITS`.
///
/// [`Self::LAST`]: Self::LAST
/// [`Self::ZERO`]: Self::ZERO
pub fn new(value: u8) -> Result<Self, BitIdxError<R>> {
if value >= R::BITS {
return Err(BitIdxError::new(value));
}
Ok(unsafe { Self::new_unchecked(value) })
}
/// Wraps a counter value as an assumed-good index into an `R` register.
///
/// # Parameters
///
/// - `value`: The counter value to mark as an index. This must be not less
/// than [`Self::ZERO`] and not more than [`Self::LAST`].
///
/// # Returns
///
/// This returns `value`, marked as a valid index.
///
/// # Safety
///
/// If the `value` is outside the valid range, then the program is
/// incorrect. Debug builds will panic; release builds do not inspect the
/// `value`.
///
/// [`Self::LAST`]: Self::LAST
/// [`Self::ZERO`]: Self::ZERO
pub unsafe fn new_unchecked(value: u8) -> Self {
debug_assert!(
value < R::BITS,
"Bit index {} cannot exceed type width {}",
value,
R::BITS,
);
Self {
idx: value,
_ty: PhantomData,
}
}
/// Casts to a new index type.
///
/// This will always succeed if `self.value()` is a valid index in the `S`
/// register; it will return an error if the `self` index is too wide for
/// `S`.
pub fn cast<S>(self) -> Result<BitIdx<S>, BitIdxError<S>>
where S: BitRegister {
BitIdx::new(self.value())
}
/// Removes the index wrapper, leaving the internal counter.
#[cfg(not(tarpaulin_include))]
pub fn value(self) -> u8 {
self.idx
}
/// Increments an index counter, wrapping at the back edge of the register.
///
/// # Parameters
///
/// - `self`: The index to increment.
///
/// # Returns
///
/// - `.0`: The next index after `self`.
/// - `.1`: Indicates that the new index is in the next register.
pub fn next(self) -> (Self, bool) {
let next = self.idx + 1;
(
unsafe { Self::new_unchecked(next & R::MASK) },
next == R::BITS,
)
}
/// Decrements an index counter, wrapping at the front edge of the register.
///
/// # Parameters
///
/// - `self`: The index to decrement.
///
/// # Returns
///
/// - `.0`: The previous index before `self`.
/// - `.1`: Indicates that the new index is in the previous register.
pub fn prev(self) -> (Self, bool) {
let prev = self.idx.wrapping_sub(1);
(
unsafe { Self::new_unchecked(prev & R::MASK) },
self.idx == 0,
)
}
/// Computes the bit position corresponding to `self` under some ordering.
///
/// This forwards to [`O::at::<R>`], which is the only public, safe,
/// constructor for a position counter.
///
/// [`O::at::<R>`]: crate::order::BitOrder::at
#[cfg(not(tarpaulin_include))]
pub fn position<O>(self) -> BitPos<R>
where O: BitOrder {
O::at::<R>(self)
}
/// Computes the bit selector corresponding to `self` under an ordering.
///
/// This forwards to [`O::select::<R>`], which is the only public, safe,
/// constructor for a bit selector.
///
/// [`O::select::<R>`]: crate::order::BitOrder::select
#[cfg(not(tarpaulin_include))]
pub fn select<O>(self) -> BitSel<R>
where O: BitOrder {
O::select::<R>(self)
}
/// Computes the bit selector for `self` as an accessor mask.
///
/// This is a type-cast over [`Self::select`].
///
/// [`Self::select`]: Self::select
#[cfg(not(tarpaulin_include))]
pub fn mask<O>(self) -> BitMask<R>
where O: BitOrder {
self.select::<O>().mask()
}
/// Iterates over all indices between an inclusive start and exclusive end
/// point.
///
/// Because implementation details of the range type family, including the
/// [`RangeBounds`] trait, are not yet stable, and heterogenous ranges are
/// not supported, this must be an opaque iterator rather than a direct
/// [`Range<BitIdx<R>>`].
///
/// # Parameters
///
/// - `from`: The inclusive low bound of the range. This will be the first
/// index produced by the iterator.
/// - `upto`: The exclusive high bound of the range. The iterator will halt
/// before yielding an index of this value.
///
/// # Returns
///
/// An opaque iterator that is equivalent to the range `from .. upto`.
///
/// # Requirements
///
/// `from` must be no greater than `upto`.
///
/// [`RangeBounds`]: core::ops::RangeBounds
/// [`Range<BitIdx<R>>`]: core::ops::Range
pub fn range(
self,
upto: BitTail<R>,
) -> impl Iterator<Item = Self>
+ DoubleEndedIterator
+ ExactSizeIterator
+ FusedIterator {
let (from, upto) = (self.value(), upto.value());
debug_assert!(from <= upto, "Ranges must run from low to high");
(from .. upto).map(|val| unsafe { Self::new_unchecked(val) })
}
/// Iterates over all possible index values.
pub fn range_all() -> impl Iterator<Item = Self>
+ DoubleEndedIterator
+ ExactSizeIterator
+ FusedIterator {
BitIdx::ZERO.range(BitTail::LAST)
}
/// Computes the jump distance for some number of bits away from a starting
/// index.
///
/// This computes the number of elements by which to adjust a base pointer,
/// and then the bit index of the destination bit in the new referent
/// register element.
///
/// # Parameters
///
/// - `self`: An index within some element, from which the offset is
/// computed.
/// - `by`: The distance by which to jump. Negative values move lower in the
/// index and element-pointer space; positive values move higher.
///
/// # Returns
///
/// - `.0`: The number of elements `R` by which to adjust a base pointer.
/// This value can be passed directly into [`ptr::offset`].
/// - `.1`: The index of the destination bit within the destination element.
///
/// [`ptr::offset`]: https://doc.rust-lang.org/stable/std/primitive.pointer.html#method.offset
pub fn offset(self, by: isize) -> (isize, Self) {
let val = self.value();
/* Signed-add `val` to the jump distance. This will almost certainly not
overflow (as the crate imposes restrictions well below `isize::MAX`),
but correctness never hurts. The resulting sum is a bit index (`far`)
and an overflow marker. Overflow only occurs when a negative `far` is
the result of a positive `by`, and so `far` must instead be interpreted
as an unsigned integer.
`far` is permitted to be negative when `ovf` does not trigger, as `by`
may be a negative value.
The number line has its 0 at the front edge of the implicit current
address, with -1 in index R::MASK at one element address less than the
implicit current address.
*/
let (far, ovf) = by.overflowing_add(val as isize);
// If the `isize` addition does not overflow, then the sum can be used
// directly.
if !ovf {
// If `far` is in the origin element, then the jump moves zero
// elements and produces `far` as an absolute index directly.
if (0 .. R::BITS as isize).contains(&far) {
(0, unsafe { Self::new_unchecked(far as u8) })
}
/* Otherwise, downshift the bit distance to compute the number of
elements moved in either direction, and mask to compute the absolute
bit index in the destination element.
*/
else {
(far >> R::INDX, unsafe {
Self::new_unchecked(far as u8 & R::MASK)
})
}
}
else {
/* Overflowing `isize` addition happens to produce ordinary `usize`
addition. In point of fact, `isize` addition and `usize` addition
are the same machine instruction to perform the sum; it is merely
the signed interpretation of the sum that differs. The sum can be
recast back to `usize` without issue.
*/
let far = far as usize;
// This is really only needed in order to prevent sign-extension of
// the downshift; once shifted, the value can be safely re-signed.
((far >> R::INDX) as isize, unsafe {
Self::new_unchecked(far as u8 & R::MASK)
})
}
}
/// Computes the span information for a region beginning at `self` for `len`
/// bits.
///
/// The span information is the number of elements in the region that hold
/// live bits, and the position of the tail marker after the live bits.
///
/// This forwards to [`BitTail::span`], as the computation is identical for
/// the two types. Beginning a span at any `Idx` is equivalent to beginning
/// it at the tail of a previous span.
///
/// # Parameters
///
/// - `self`: The start bit of the span.
/// - `len`: The number of bits in the span.
///
/// # Returns
///
/// - `.0`: The number of elements, starting in the element that contains
/// `self`, that contain live bits of the span.
/// - `.1`: The tail counter of the span’s end point.
///
/// [`BitTail::span`]: crate::index::BitTail::span
pub fn span(self, len: usize) -> (usize, BitTail<R>) {
unsafe { BitTail::<R>::new_unchecked(self.value()) }.span(len)
}
}
impl<R> TryFrom<u8> for BitIdx<R>
where R: BitRegister
{
type Error = BitIdxError<R>;
fn try_from(value: u8) -> Result<Self, Self::Error> {
Self::new(value)
}
}
impl<R> Binary for BitIdx<R>
where R: BitRegister
{
fn fmt(&self, fmt: &mut Formatter) -> fmt::Result {
write!(fmt, "{:0>1$b}", self.idx, R::INDX as usize)
}
}
impl<R> Debug for BitIdx<R>
where R: BitRegister
{
fn fmt(&self, fmt: &mut Formatter) -> fmt::Result {
write!(fmt, "BitIdx<{}>({})", any::type_name::<R>(), self)
}
}
#[cfg(not(tarpaulin_include))]
impl<R> Display for BitIdx<R>
where R: BitRegister
{
#[inline(always)]
fn fmt(&self, fmt: &mut Formatter) -> fmt::Result {
Binary::fmt(&self, fmt)
}
}
/// Marks an index that is invalid for a register type.
#[repr(transparent)]
#[derive(Clone, Copy, Default, Eq, Hash, Ord, PartialEq, PartialOrd)]
pub struct BitIdxError<R>
where R: BitRegister
{
/// The value that is invalid as a [`BitIdx<R>`].
///
/// [`BitIdx<R>`]: crate::index::BitIdx
err: u8,
/// Marker for the register type.
_ty: PhantomData<R>,
}
impl<R> BitIdxError<R>
where R: BitRegister
{
/// Marks a counter value as invalid to be an index for an `R` register.
///
/// # Parameters
///
/// - `value`: The counter value to mark as an error. This must be greater
/// than [`BitIdx::<R>::LAST`].
///
/// # Returns
///
/// This returns `value`, marked as an invalid index for `R`.
///
/// # Panics
///
/// Debug builds panic when `value` is a valid index for `R`.
pub(crate) fn new(value: u8) -> Self {
debug_assert!(
value >= R::BITS,
"Bit index {} is valid for type width {}",
value,
R::BITS
);
Self {
err: value,
_ty: PhantomData,
}
}
/// Removes the error wrapper, leaving the internal counter.
#[cfg(not(tarpaulin_include))]
pub fn value(self) -> u8 {
self.err
}
}
impl<R> Debug for BitIdxError<R>
where R: BitRegister
{
fn fmt(&self, fmt: &mut Formatter) -> fmt::Result {
write!(fmt, "BitIdxErr<{}>({})", any::type_name::<R>(), self.err)
}
}
#[cfg(not(tarpaulin_include))]
impl<R> Display for BitIdxError<R>
where R: BitRegister
{
fn fmt(&self, fmt: &mut Formatter) -> fmt::Result {
write!(
fmt,
"The value {} is too large to index into {} ({} bits)",
self.err,
any::type_name::<R>(),
R::BITS
)
}
}
#[cfg(feature = "std")]
impl<R> std::error::Error for BitIdxError<R> where R: BitRegister
{
}
/** A semantic index counter within *or one bit past the end of* a register
element `R`.
This type is a counter in the ring `0 ..= R::BITS`, and serves to mark a
semantic index of a dead bit *after* a live region. As such, following in the
C++ and LLVM memory model of first-live/first-dead region descriptiors, it marks
an endpoint outside some bit-region, and may be used to compute the startpoint
of a bit-region immediately succeeding, but not overlapping, the source.
As a dead-bit index, this *cannot* be used for indexing into a register. It is
used only in abstract region computation.
This type is necessary in order to preserve the distinction between a dead
memory address that is *not* part of a buffer and a live memory address that is
within a region. [`BitIdx`] is insufficient to this task, and causes buffer
management errors when used in its stead.
# Type Parameters
- `R`: The register element that this end index governs.
# Validity
Values of this type are **required** to be in the range `0 ..= R::BITS`. Any
value greater than [`R::BITS`] makes the program invalid, and will likely cause
either a crash or incorrect memory access.
# Construction
This type can only be publicly constructed through [`BitIdx::span`].
[`BitIdx`]: crate::index::BitIdx
[`R::BITS`]: crate::mem::BitMemory::BITS
**/
#[repr(transparent)]
#[derive(Clone, Copy, Default, Eq, Hash, Ord, PartialEq, PartialOrd)]
pub struct BitTail<R>
where R: BitRegister
{
/// Semantic tail counter within or after a register, contained to `0 ..=
/// R::BITS`.
end: u8,
/// Marker for the register type.
_ty: PhantomData<R>,
}
impl<R> BitTail<R>
where R: BitRegister
{
/// The inclusive maximum tail within an element `R`.
pub const LAST: Self = Self {
end: R::BITS,
_ty: PhantomData,
};
/// The inclusive minimum tail within an element `R`.
pub const ZERO: Self = Self {
end: 0,
_ty: PhantomData,
};
/// Wraps a counter value as a known-good tail of an `R` register.
///
/// # Parameters
///
/// - `value`: The counter value to mark as a tail. This must be not less
/// than [`Self::ZERO`] and not more than [`Self::LAST`].
///
/// # Returns
///
/// This returns `Some(value)` when it is in the valid range `0 .. R::BITS`,
/// and `None` when it is not.
///
/// [`Self::LAST`]: Self::LAST
/// [`Self::ZERO`]: Self::ZERO
pub fn new(value: u8) -> Option<Self> {
if value > R::BITS {
return None;
}
Some(unsafe { Self::new_unchecked(value) })
}
/// Wraps a counter value as an assumed-good tail of an `R` register.
///
/// # Parameters
///
/// - `value`: The counter value to mark as a tail. This must be not less
/// than [`Self::ZERO` and not more than [`Self::LAST`].
///
/// # Returns
///
/// This returns `value`, marked as a valid tail.
///
/// # Safety
///
/// If the `value` is outside the valid range, then the program is
/// incorrect. Debug builds will panic; release builds do not inspect the
/// `value`.
///
/// [`Self::LAST`]: Self::LAST
/// [`Self::ZERO`]: Self::ZERO
pub(crate) unsafe fn new_unchecked(value: u8) -> Self {
debug_assert!(
value <= R::BITS,
"Bit tail {} cannot exceed type width {}",
value,
R::BITS,
);
Self {
end: value,
_ty: PhantomData,
}
}
/// Removes the tail wrapper, leaving the internal counter.
#[cfg(not(tarpaulin_include))]
pub fn value(self) -> u8 {
self.end
}
/// Iterates over all tail indices at and after an inclusive starting point.
///
/// Because implementation details of the range type family, including the
/// [`RangeBounds`] trait, are not yet stable, and heterogenous ranges are
/// not yet supported, this must be an opaque iterator rather than a direct
/// [`Range<BitTail<R>>`].
///
/// # Parameters
///
/// - `from`: The inclusive low bound of the range. This will be the first
/// tail produced by the iterator.
///
/// # Returns
///
/// An opaque iterator that is equivalent to the range `from ..=
/// Self::LAST`.
///
/// [`RangeBounds`]: core::ops::RangeBounds
/// [`Range<BitTail<R>>`]: core::ops::Range
pub fn range_from(
from: BitIdx<R>,
) -> impl Iterator<Item = Self>
+ DoubleEndedIterator
+ ExactSizeIterator
+ FusedIterator {
(from.idx ..= Self::LAST.end)
.map(|tail| unsafe { BitTail::new_unchecked(tail) })
}
/// Computes the span information for a region beginning immediately after a
/// preceding region.
///
/// The computed region of `len` bits has its start at the *live* bit that
/// corresponds to the `self` dead tail. The return value is the number of
/// memory elements containing live bits of the computed span and its tail
/// marker.
///
/// # Parameters
///
/// - `self`: A dead bit immediately after some region.
/// - `len`: The number of live bits in the span starting after `self`.
///
/// # Returns
///
/// - `.0`: The number of elements `R` that contain live bits in the
/// computed region.
/// - `.1`: The tail counter of the first dead bit after the new span.
///
/// # Behavior
///
/// If `len` is `0`, this returns `(0, self)`, as the span has no live bits.
/// If `self` is [`BitTail::LAST`], then the new region starts at
/// [`BitIdx::ZERO`] in the next element.
///
/// [`BitIdx::ZERO`]: crate::index::BitIdx::ZERO
/// [`BitTail::LAST`]: crate::index::BitTail::LAST
pub(crate) fn span(self, len: usize) -> (usize, Self) {
if len == 0 {
return (0, self);
}
let val = self.end;
let head = val & R::MASK;
let bits_in_head = (R::BITS - head) as usize;
if len <= bits_in_head {
return (1, unsafe { Self::new_unchecked(head + len as u8) });
}
let bits_after_head = len - bits_in_head;
let elts = bits_after_head >> R::INDX;
let tail = bits_after_head as u8 & R::MASK;
let is_zero = (tail == 0) as u8;
let edges = 2 - is_zero as usize;
(elts + edges, unsafe {
Self::new_unchecked((is_zero << R::INDX) | tail)
})
}
}
impl<R> Binary for BitTail<R>
where R: BitRegister
{
fn fmt(&self, fmt: &mut Formatter) -> fmt::Result {
write!(fmt, "{:0>1$b}", self.end, R::INDX as usize + 1)
}
}
impl<R> Debug for BitTail<R>
where R: BitRegister
{
fn fmt(&self, fmt: &mut Formatter) -> fmt::Result {
write!(fmt, "BitTail<{}>({})", any::type_name::<R>(), self)
}
}
#[cfg(not(tarpaulin_include))]
impl<R> Display for BitTail<R>
where R: BitRegister
{
#[inline(always)]
fn fmt(&self, fmt: &mut Formatter) -> fmt::Result {
Binary::fmt(&self, fmt)
}
}
/** An electrical position counter within a register element `R`.
This type is a counter in the ring `0 .. R::BITS`, and serves to mark an
electrical address of a real bit. It is the shift distance in the expression
`1 << n`. It is only produced by applying a [`BitOrder::at`] transformation to
some [`BitIdx`] produced by this library.
# Type Parameters
- `R`: The register element that this position governs.
# Validity
Values of this type are **required** to be in the range `0 .. R::BITS`. Any
value not less than [`R::BITS`] makes the program invalid, and will likely cause
a crash. In addition, [`BitOrder::at`] has a list of requirements that its
implementations must uphold in order to make construction of this type
semantically correct in a program.
# Construction
This type is publicly constructible. [`bitvec`] will only request its creation
by calling [`BitOrder::at`], and has no sites that can publicly accept untrusted
values.
[`BitIdx`]: crate::index::BitIdx
[`BitOrder::at`]: crate::order::BitOrder::at
[`R::BITS`]: crate::mem::BitMemory::BITS
**/
// #[rustc_layout_scalar_valid_range_end(R::BITS)]
#[repr(transparent)]
#[derive(Clone, Copy, Default, Eq, Hash, Ord, PartialEq, PartialOrd)]
pub struct BitPos<R>
where R: BitRegister
{
/// Electrical position counter within a register, constrained to `0 ..
/// R::BITS`.
pos: u8,
/// Marker for the register type.
_ty: PhantomData<R>,
}
impl<R> BitPos<R>
where R: BitRegister
{
/// Wraps a counter value as a known-good position within an `R` register.
///
/// # Parameters
///
/// - `value`: The counter value to mark as a position. This must be in the
/// range `0 .. R::BITS`.
///
/// # Returns
///
/// This returns `Some(value)` when it is in the valid range `0 .. R::BITS`,
/// and `None` when it is not.
pub fn new(value: u8) -> Option<Self> {
if value >= R::BITS {
return None;
}
Some(unsafe { Self::new_unchecked(value) })
}
/// Wraps a counter value as an assumed-good position within an `R`
/// register.
///
/// # Parameters
///
/// - `value`: The counter value to mark as a position. This must be in the
/// range `0 .. R::BITS`.
///
/// # Returns
///
/// This returns `value`, marked as a valid position.
///
/// # Safety
///
/// If the `value` is outside the valid range, then the program is
/// incorrect. Debug builds will panic; release builds do not inspect the
/// `value`.
pub unsafe fn new_unchecked(value: u8) -> Self {
debug_assert!(
value < R::BITS,
"Bit position {} cannot exceed type width {}",
value,
R::BITS,
);
Self {
pos: value,
_ty: PhantomData,
}
}
/// Removes the position wrapper, leaving the internal counter.
#[cfg(not(tarpaulin_include))]
pub fn value(self) -> u8 {
self.pos
}
/// Computes the bit selector corresponding to `self`.
///
/// This is always `1 << self.pos`.
pub fn select(self) -> BitSel<R> {
unsafe { BitSel::new_unchecked(R::ONE << self.pos) }
}
/// Computes the bit selector for `self` as an accessor mask.
///
/// This is a type-cast over [`Self::select`].
///
/// [`Self::select`]: Self::select
#[cfg(not(tarpaulin_include))]
pub fn mask(self) -> BitMask<R> {
self.select().mask()
}
/// Iterates over all possible position values.
pub(crate) fn range_all() -> impl Iterator<Item = Self>
+ DoubleEndedIterator
+ ExactSizeIterator
+ FusedIterator {
BitIdx::<R>::range_all()
.map(|idx| unsafe { Self::new_unchecked(idx.value()) })
}
}
impl<R> Binary for BitPos<R>
where R: BitRegister
{
fn fmt(&self, fmt: &mut Formatter) -> fmt::Result {
write!(fmt, "{:0>1$b}", self.pos, R::INDX as usize)
}
}
impl<R> Debug for BitPos<R>
where R: BitRegister
{
fn fmt(&self, fmt: &mut Formatter) -> fmt::Result {
write!(fmt, "BitPos<{}>({})", any::type_name::<R>(), self)
}
}
#[cfg(not(tarpaulin_include))]
impl<R> Display for BitPos<R>
where R: BitRegister
{
#[inline(always)]
fn fmt(&self, fmt: &mut Formatter) -> fmt::Result {
Binary::fmt(&self, fmt)
}
}
/** A one-hot selection mask for a register element `R`.
This type selects exactly one bit in a register. It is used to apply test and
write operations into memory.
# Type Parameters
- `R`: The register element this selector governs.
# Validity
Values of this type are required to have exactly one bit set high, and all
others set low.
# Construction
This type is only constructed from the [`BitPos::select`] and
[`BitOrder::select`] functions. It is always equivalent to
`1 << BitPos::unwrap`.
The chain of custody, from known-good [`BitIdx`] values, through proven-good
[`BitOrder`] implementations, into [`BitPos`] and then `BitSel`, proves that
values of this type are always correct to apply to underlying memory.
[`BitIdx`]: crate::index::BitIdx
[`BitOrder`]: crate::order::BitOrder
[`BitOrder::select`]: crate::order::BitOrder::select
[`BitPos`]: crate::index::BitPos
[`BitPos::select`]: crate::index::BitPos::select
**/
// #[rustc_layout_scalar_valid_range_end(R::BITS)]
#[repr(transparent)]
#[derive(Clone, Copy, Default, Eq, Hash, Ord, PartialEq, PartialOrd)]
pub struct BitSel<R>
where R: BitRegister
{
/// The one-hot selector mask.
sel: R,
}
impl<R> BitSel<R>
where R: BitRegister
{
/// Wraps a counter value as a known-good selection of an `R` register.
///
/// # Parameters
///
/// - `value`: A one-hot selection mask of a bit in an `R` register.
///
/// # Returns
///
/// If `value` is a power of two (exactly one bit set high and all others
/// set low), it returns `Some` of a `BitSel` wrapping the `value`.
///
/// [`BitOrder::at`]: crate:order::BitOrder::at
/// [`BitOrder::select`]: crate::order::BitOrder::select
/// [`BitPos`]: crate::index::BitPos
pub fn new(value: R) -> Option<Self> {
if value.count_ones() != 1 {
return None;
}
Some(unsafe { Self::new_unchecked(value) })
}
/// Wraps a counter value as an assumed-good selection of an `R` register.
///
/// # Parameters
///
/// - `value`: A one-hot selection mask of a bit in an `R` register.
///
/// # Returns
///
/// `value` wrapped in a `BitSel`.
///
/// # Safety
///
/// `value` **must** be a power of two: one bit set high and all others set
/// low. In debug builds, invalid `value`s cause a panic; release builds do
/// not check the input.
///
/// This function must only be called in a [`BitOrder::select`]
/// implementation that is verified to be correct.
///
/// [`BitOrder::select`]: crate::order::BitOrder::select
pub unsafe fn new_unchecked(value: R) -> Self {
debug_assert!(
value.count_ones() == 1,
"Selections are required to have exactly one set bit: {:0>1$b}",
value,
R::BITS as usize,
);
Self { sel: value }
}
/// Removes the selector wrapper, leaving the internal counter.
#[cfg(not(tarpaulin_include))]
pub fn value(self) -> R {
self.sel
}
/// Computes a bit-mask for `self`. This is a type-cast.
#[inline(always)]
#[cfg(not(tarpaulin_include))]
pub fn mask(self) -> BitMask<R> {
BitMask::new(self.sel)
}
/// Iterates over all possible selector values.
pub fn range_all() -> impl Iterator<Item = Self>
+ DoubleEndedIterator
+ ExactSizeIterator
+ FusedIterator {
BitPos::<R>::range_all().map(BitPos::select)
}
}
impl<R> Binary for BitSel<R>
where R: BitRegister
{
fn fmt(&self, fmt: &mut Formatter) -> fmt::Result {
write!(fmt, "{:0>1$b}", self.sel, R::BITS as usize)
}
}
impl<R> Debug for BitSel<R>
where R: BitRegister
{
fn fmt(&self, fmt: &mut Formatter) -> fmt::Result {
write!(fmt, "BitSel<{}>({})", any::type_name::<R>(), self)
}
}
#[cfg(not(tarpaulin_include))]
impl<R> Display for BitSel<R>
where R: BitRegister
{
#[inline(always)]
fn fmt(&self, fmt: &mut Formatter) -> fmt::Result {
Binary::fmt(&self, fmt)
}
}
/** A multi-bit selection mask for a register `R`.
Unlike [`BitSel`], which enforces a strict one-hot mask encoding, this mask type
permits any number of bits to be set or unset. This is used to accumulate
selections for a batched operation on a register.
# Type Parameters
- `R`: The register element that this masks.
# Construction
This can only be constructed by combining [`BitSel`] selection mask produced
through the [`BitIdx`] and [`BitOrder`] chain of custody.
[`BitIdx`]: crate::index::BitIdx
[`BitOrder`]: crate::order::BitOrder
[`BitSel`]: crate::index::BitSel
**/
#[repr(transparent)]
#[derive(Clone, Copy, Default, Eq, Hash, Ord, PartialEq, PartialOrd)]
pub struct BitMask<R>
where R: BitRegister
{
/// A mask of any number of bits to select.
mask: R,
}
impl<R> BitMask<R>
where R: BitRegister
{
/// A full mask.
pub const ALL: Self = Self { mask: R::ALL };
/// An empty mask.
pub const ZERO: Self = Self { mask: R::ZERO };
/// Wraps any `R` value as a bit-mask.
///
/// This constructor is provided to explicitly declare that an operation is
/// discarding the numeric value of an integer and instead using it only as
/// a bit-mask.
///
/// # Parameters
///
/// - `value`: Some integer to use as a bit-mask.
///
/// # Returns
///
/// The `value` wrapped as a bit-mask, with its numeric context discarded.
///
/// Prefer accumulating [`BitSel`] values using the `Sum` implementation.
///
/// # Safety
///
/// The `value` must be computed from a set of valid bit positions in the
/// caller’s context.
///
/// [`BitOrder::mask`]: crate::order::BitOrder::mask
/// [`BitSel`]: crate::index::BitSel
pub fn new(value: R) -> Self {
Self { mask: value }
}
/// Removes the mask wrapper, leaving the internal value.
#[cfg(not(tarpaulin_include))]
pub fn value(self) -> R {
self.mask
}
/// Tests whether the mask contains a given selector bit.
///
/// # Parameters
///
/// - `&self`
/// - `sel`: Some single selection bit to test in `self`.
///
/// # Returns
///
/// Whether `self` is set high at `sel`.
pub fn test(&self, sel: BitSel<R>) -> bool {
self.mask & sel.sel != R::ZERO
}
/// Inserts a selector bit into an existing mask.
///
/// # Parameters
///
/// - `&mut self`
/// - `sel`: A selector bit to set in `self`.
///
/// # Effects
///
/// The bit at `sel` is set high in `self`.
pub fn insert(&mut self, sel: BitSel<R>) {
self.mask |= sel.sel;
}
/// Creates a new mask with a selector bit activated.
///
/// # Parameters
///
/// - `self`
/// - `sel`: A selector bit to set in `self`
///
/// # Returns
///
/// A copy of `self`, with `sel` set high.
pub fn combine(self, sel: BitSel<R>) -> Self {
Self {
mask: self.mask | sel.sel,
}
}
}
impl<R> Binary for BitMask<R>
where R: BitRegister
{
fn fmt(&self, fmt: &mut Formatter) -> fmt::Result {
write!(fmt, "{:0>1$b}", self.mask, R::BITS as usize)
}
}
impl<R> Debug for BitMask<R>
where R: BitRegister
{
fn fmt(&self, fmt: &mut Formatter) -> fmt::Result {
write!(fmt, "BitMask<{}>({})", any::type_name::<R>(), self)
}
}
#[cfg(not(tarpaulin_include))]
impl<R> Display for BitMask<R>
where R: BitRegister
{
#[inline(always)]
fn fmt(&self, fmt: &mut Formatter) -> fmt::Result {
Binary::fmt(&self, fmt)
}
}
impl<R> Sum<BitSel<R>> for BitMask<R>
where R: BitRegister
{
fn sum<I>(iter: I) -> Self
where I: Iterator<Item = BitSel<R>> {
iter.fold(Self::ZERO, Self::combine)
}
}
impl<R> BitAnd<R> for BitMask<R>
where R: BitRegister
{
type Output = Self;
fn bitand(self, rhs: R) -> Self::Output {
Self {
mask: self.mask & rhs,
}
}
}
impl<R> BitOr<R> for BitMask<R>
where R: BitRegister
{
type Output = Self;
fn bitor(self, rhs: R) -> Self::Output {
Self {
mask: self.mask | rhs,
}
}
}
impl<R> Not for BitMask<R>
where R: BitRegister
{
type Output = Self;
fn not(self) -> Self::Output {
Self { mask: !self.mask }
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::order::Lsb0;
use tap::conv::TryConv;
#[test]
fn index_ctors() {
for n in 0 .. 8 {
assert!(BitIdx::<u8>::new(n).is_ok());
assert!(n.try_conv::<BitIdx<u8>>().is_ok());
}
assert!(BitIdx::<u8>::new(8).is_err());
assert!(8u8.try_conv::<BitIdx<u8>>().is_err());
for n in 0 .. 16 {
assert!(BitIdx::<u16>::new(n).is_ok());
}
assert!(BitIdx::<u16>::new(16).is_err());
for n in 0 .. 32 {
assert!(BitIdx::<u32>::new(n).is_ok());
}
assert!(BitIdx::<u32>::new(32).is_err());
#[cfg(target_pointer_width = "64")]
{
for n in 0 .. 64 {
assert!(BitIdx::<u64>::new(n).is_ok());
}
assert!(BitIdx::<u64>::new(64).is_err());
}
if cfg!(target_pointer_width = "32") {
for n in 0 .. 32 {
assert!(BitIdx::<usize>::new(n).is_ok());
}
assert!(BitIdx::<usize>::new(32).is_err());
}
else if cfg!(target_pointer_width = "64") {
for n in 0 .. 64 {
assert!(BitIdx::<usize>::new(n).is_ok());
}
assert!(BitIdx::<usize>::new(64).is_err());
}
}
#[test]
fn tail_ctors() {
for n in 0 ..= 8 {
assert!(BitTail::<u8>::new(n).is_some());
}
assert!(BitTail::<u8>::new(9).is_none());
for n in 0 ..= 16 {
assert!(BitTail::<u16>::new(n).is_some());
}
assert!(BitTail::<u16>::new(17).is_none());
for n in 0 ..= 32 {
assert!(BitTail::<u32>::new(n).is_some());
}
assert!(BitTail::<u32>::new(33).is_none());
#[cfg(target_pointer_width = "64")]
{
for n in 0 ..= 64 {
assert!(BitTail::<u64>::new(n).is_some());
}
assert!(BitTail::<u64>::new(65).is_none());
}
if cfg!(target_pointer_width = "32") {
for n in 0 ..= 32 {
assert!(BitTail::<usize>::new(n).is_some());
}
assert!(BitTail::<usize>::new(33).is_none());
}
else if cfg!(target_pointer_width = "64") {
for n in 0 ..= 64 {
assert!(BitTail::<usize>::new(n).is_some());
}
assert!(BitTail::<usize>::new(65).is_none());
}
}
#[test]
fn position_ctors() {
for n in 0 .. 8 {
assert!(BitPos::<u8>::new(n).is_some());
}
assert!(BitPos::<u8>::new(8).is_none());
for n in 0 .. 16 {
assert!(BitPos::<u16>::new(n).is_some());
}
assert!(BitPos::<u16>::new(16).is_none());
for n in 0 .. 32 {
assert!(BitPos::<u32>::new(n).is_some());
}
assert!(BitPos::<u32>::new(32).is_none());
#[cfg(target_pointer_width = "64")]
{
for n in 0 .. 64 {
assert!(BitPos::<u64>::new(n).is_some());
}
assert!(BitPos::<u64>::new(64).is_none());
}
if cfg!(target_pointer_width = "32") {
for n in 0 .. 32 {
assert!(BitPos::<usize>::new(n).is_some());
}
assert!(BitPos::<usize>::new(32).is_none());
}
else if cfg!(target_pointer_width = "64") {
for n in 0 .. 64 {
assert!(BitPos::<usize>::new(n).is_some());
}
assert!(BitPos::<usize>::new(64).is_none());
}
}
#[test]
fn select_ctors() {
for n in 0 .. 8 {
assert!(BitSel::<u8>::new(1 << n).is_some());
}
assert!(BitSel::<u8>::new(3).is_none());
for n in 0 .. 16 {
assert!(BitSel::<u16>::new(1 << n).is_some());
}
assert!(BitSel::<u16>::new(3).is_none());
for n in 0 .. 32 {
assert!(BitSel::<u32>::new(1 << n).is_some());
}
assert!(BitSel::<u32>::new(3).is_none());
#[cfg(target_pointer_width = "64")]
{
for n in 0 .. 64 {
assert!(BitSel::<u64>::new(1 << n).is_some());
}
assert!(BitSel::<u64>::new(3).is_none());
}
if cfg!(target_pointer_width = "32") {
for n in 0 .. 32 {
assert!(BitSel::<usize>::new(1 << n).is_some());
}
assert!(BitSel::<usize>::new(3).is_none());
}
else if cfg!(target_pointer_width = "64") {
for n in 0 .. 64 {
assert!(BitSel::<usize>::new(1 << n).is_some());
}
assert!(BitSel::<usize>::new(3).is_none());
}
}
#[test]
fn ranges() {
let mut range = BitIdx::<u16>::range_all();
assert_eq!(range.next(), BitIdx::new(0).ok());
assert_eq!(range.next_back(), BitIdx::new(15).ok());
assert_eq!(range.count(), 14);
let mut range = BitTail::<u8>::range_from(BitIdx::new(1).unwrap());
assert_eq!(range.next(), BitTail::new(1));
assert_eq!(range.next_back(), BitTail::new(8));
assert_eq!(range.count(), 6);
let mut range = BitPos::<u8>::range_all();
assert_eq!(range.next(), BitPos::new(0));
assert_eq!(range.next_back(), BitPos::new(7));
assert_eq!(range.count(), 6);
let mut range = BitSel::<u8>::range_all();
assert_eq!(range.next(), BitSel::new(1));
assert_eq!(range.next_back(), BitSel::new(128));
assert_eq!(range.count(), 6);
}
#[test]
fn index_cycle() {
let six = BitIdx::<u8>::new(6).unwrap();
let (seven, step) = six.next();
assert_eq!(seven, BitIdx::new(7).unwrap());
assert!(!step);
let (zero, step) = seven.next();
assert_eq!(zero, BitIdx::ZERO);
assert!(step);
let (seven, step) = zero.prev();
assert_eq!(seven, BitIdx::new(7).unwrap());
assert!(step);
let (six, step) = seven.prev();
assert_eq!(six, BitIdx::new(6).unwrap());
assert!(!step);
let fourteen = BitIdx::<u16>::new(14).unwrap();
let (fifteen, step) = fourteen.next();
assert_eq!(fifteen, BitIdx::new(15).unwrap());
assert!(!step);
let (zero, step) = fifteen.next();
assert_eq!(zero, BitIdx::ZERO);
assert!(step);
let (fifteen, step) = zero.prev();
assert_eq!(fifteen, BitIdx::new(15).unwrap());
assert!(step);
let (fourteen, step) = fifteen.prev();
assert_eq!(fourteen, BitIdx::new(14).unwrap());
assert!(!step);
}
#[test]
fn jumps() {
let (jump, head) = BitIdx::<u8>::new(1).unwrap().offset(2);
assert_eq!(jump, 0);
assert_eq!(head, BitIdx::new(3).unwrap());
let (jump, head) = BitIdx::<u8>::LAST.offset(1);
assert_eq!(jump, 1);
assert_eq!(head, BitIdx::ZERO);
let (jump, head) = BitIdx::<u16>::new(10).unwrap().offset(40);
// 10 is in 0..16; 10+40 is in 48..64
assert_eq!(jump, 3);
assert_eq!(head, BitIdx::new(2).unwrap());
let (jump, head) = BitIdx::<u8>::LAST.offset(isize::MAX);
assert_eq!(jump, ((isize::MAX as usize + 1) >> 3) as isize);
assert_eq!(head, BitIdx::LAST.prev().0);
let (elts, tail) = BitIdx::<u8>::new(4).unwrap().span(0);
assert_eq!(elts, 0);
assert_eq!(tail, BitTail::new(4).unwrap());
let (elts, tail) = BitIdx::<u8>::new(3).unwrap().span(3);
assert_eq!(elts, 1);
assert_eq!(tail, BitTail::new(6).unwrap());
let (elts, tail) = BitIdx::<u16>::new(10).unwrap().span(40);
assert_eq!(elts, 4);
assert_eq!(tail, BitTail::new(2).unwrap());
}
#[test]
fn mask_operators() {
let mut mask = BitIdx::<u8>::new(2)
.unwrap()
.range(BitTail::new(5).unwrap())
.map(BitIdx::select::<Lsb0>)
.sum::<BitMask<u8>>();
assert_eq!(mask, BitMask::new(28));
assert_eq!(mask & 25, BitMask::new(24));
assert_eq!(mask | 32, BitMask::new(60));
assert_eq!(!mask, BitMask::new(!28));
let yes = BitSel::<u8>::new(16).unwrap();
let no = BitSel::<u8>::new(64).unwrap();
assert!(mask.test(yes));
assert!(!mask.test(no));
mask.insert(no);
assert!(mask.test(no));
}
#[test]
#[cfg(feature = "alloc")]
fn render() {
use crate::order::Msb0;
#[cfg(not(feature = "std"))]
use alloc::format;
assert_eq!(format!("{:?}", BitIdx::<u8>::LAST), "BitIdx<u8>(111)");
assert_eq!(format!("{:?}", BitIdx::<u16>::LAST), "BitIdx<u16>(1111)");
assert_eq!(format!("{:?}", BitIdx::<u32>::LAST), "BitIdx<u32>(11111)");
assert_eq!(
format!("{:?}", BitIdx::<u8>::new(8).unwrap_err()),
"BitIdxErr<u8>(8)",
);
assert_eq!(
format!("{:?}", BitIdx::<u16>::new(16).unwrap_err()),
"BitIdxErr<u16>(16)",
);
assert_eq!(
format!("{:?}", BitIdx::<u32>::new(32).unwrap_err()),
"BitIdxErr<u32>(32)",
);
assert_eq!(format!("{:?}", BitTail::<u8>::LAST), "BitTail<u8>(1000)");
assert_eq!(format!("{:?}", BitTail::<u16>::LAST), "BitTail<u16>(10000)");
assert_eq!(
format!("{:?}", BitTail::<u32>::LAST),
"BitTail<u32>(100000)",
);
assert_eq!(
format!("{:?}", BitIdx::<u8>::LAST.position::<Msb0>()),
"BitPos<u8>(000)",
);
assert_eq!(
format!("{:?}", BitIdx::<u16>::LAST.position::<Lsb0>()),
"BitPos<u16>(1111)",
);
assert_eq!(
format!("{:?}", BitIdx::<u32>::LAST.position::<Msb0>()),
"BitPos<u32>(00000)",
);
assert_eq!(
format!("{:?}", BitIdx::<u8>::LAST.select::<Msb0>()),
"BitSel<u8>(00000001)",
);
assert_eq!(
format!("{:?}", BitIdx::<u16>::LAST.select::<Lsb0>()),
"BitSel<u16>(1000000000000000)",
);
assert_eq!(
format!("{:?}", BitIdx::<u32>::LAST.select::<Msb0>()),
"BitSel<u32>(00000000000000000000000000000001)",
);
assert_eq!(
format!("{:?}", BitMask::<u8>::new(1 | 4 | 32)),
"BitMask<u8>(00100101)",
);
assert_eq!(
format!("{:?}", BitMask::<u16>::new(1 | 4 | 32)),
"BitMask<u16>(0000000000100101)",
);
assert_eq!(
format!("{:?}", BitMask::<u32>::new(1 | 4 | 32)),
"BitMask<u32>(00000000000000000000000000100101)",
);
#[cfg(target_pointer_width = "64")]
{
assert_eq!(
format!("{:?}", BitIdx::<u64>::LAST),
"BitIdx<u64>(111111)",
);
assert_eq!(
format!("{:?}", BitIdx::<u64>::new(64).unwrap_err()),
"BitIdxErr<u64>(64)",
);
assert_eq!(
format!("{:?}", BitTail::<u64>::LAST),
"BitTail<u64>(1000000)",
);
assert_eq!(
format!("{:?}", BitIdx::<u64>::LAST.position::<Lsb0>()),
"BitPos<u64>(111111)",
);
assert_eq!(
format!("{:?}",BitIdx::<u64>::LAST.select::<Lsb0>()),
"BitSel<u64>(1000000000000000000000000000000000000000000000000000000000000000)",
);
assert_eq!(
format!("{:?}", BitMask::<u64>::new(1 | 4 | 32)),
"BitMask<u64>(0000000000000000000000000000000000000000000000000000000000100101)",
);
}
}
}